Computational Intelligence Methods for Sentiment Analysis in Natural Language Processing Applications | Buch | 978-0-443-22009-8 | sack.de

Buch, Englisch, Format (B × H): 191 mm x 235 mm, Gewicht: 610 g

Computational Intelligence Methods for Sentiment Analysis in Natural Language Processing Applications


Erscheinungsjahr 2024
ISBN: 978-0-443-22009-8
Verlag: Elsevier Science & Technology

Buch, Englisch, Format (B × H): 191 mm x 235 mm, Gewicht: 610 g

ISBN: 978-0-443-22009-8
Verlag: Elsevier Science & Technology


Computational Intelligence for Sentiment Analysis in Natural Language Processing Applications provides a solution to this problem through detailed technical coverage of AI-based Sentiment Analysis methods for various applications. The book's authors provide readers with an in-depth look at the challenges and associated solutions, including case studies and real-world scenarios from across the globe. Development of scientific and enterprise applications are covered that will aid computer scientists in building practical/real-world AI-based Sentiment Analysis systems. With the vast increase in Big Data, computational intelligence approaches have become a necessity for Natural Language Processing and Sentiment Analysis in a wide range of decision-making application areas.
Computational Intelligence Methods for Sentiment Analysis in Natural Language Processing Applications jetzt bestellen!

Weitere Infos & Material


1. Role of Machine Learning in Sentiment Analysis: Trends, Challenges and Future Directions Vidyasagar Shetty and Shabari Shedthi 2. A Comparative analysis of Machine Learning and Deep Learning Techniques for Aspect-based Sentiment Analysis Getzi Jeba Leelipushpam Paulraj, Theresa V. Cherian, Joyce Beryl Princess and Immanuel Johnraja Jebadurai 3. A systematic survey on Text-based Dimensional Sentiment Analysis: Advancements, Challenges and Future directions Saroj Date and Sahin Deshmukh 4. A model of time in Natural Linguistic Reasoning Daniela López De Luise and Sebastian Cippitelli 5. Hate speech detection using LSTM network from Twitter speech data Ravi Shekhar Tiwari 6. Enhanced Performance of Drug Review Classification from Social Network by ADASYN Training and NLP Techniques P.M. Lavanya and E Sasikala 7. Emotion Detection from Text Data using Machine Learning for Human Behavior Analysis Muskan Garg and Chandni Saxena 8. Optimization of Effectual Sentiment Analysis in Film Reviews using Machine Learning Techniques S. Balamurugan 9. Deep Learning for Double Negative Detection in Text Data for Customer Feedback Analysis on a Product Deepika Ghai, Suman Lata Tripathi, Ramandeep Sandhu, Ranjit Kaur, Mohammad Faiz and Gurleen Kaur Walia 10. Sarcasm Detection using Deep Learning in Natural Language Processing Santhanam Lakshmi 11. Abusive comment detection in Tamil Language using Deep Learning Vedika Gupta, Deepawali Sharma and Vivek Kumar Singh 12. Implementation of Sentiment Analysis in Stock Market Prediction using variants of GARCH models Vijayalakshmi V 13. A Metaheuristic Harmony Search Optimization Based Approach for Hateful and Offensive Speech Detection in social media S. Saroja and S Haseena


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.