Extreme Value Theory-Based Methods for Visual Recognition | Buch | 978-1-62705-700-4 | sack.de

Buch, Englisch, 131 Seiten, Paperback, Format (B × H): 190 mm x 235 mm

Reihe: Synthesis Lectures on Computer Vision

Extreme Value Theory-Based Methods for Visual Recognition


Erscheinungsjahr 2017
ISBN: 978-1-62705-700-4
Verlag: Morgan & Claypool Publishers

Buch, Englisch, 131 Seiten, Paperback, Format (B × H): 190 mm x 235 mm

Reihe: Synthesis Lectures on Computer Vision

ISBN: 978-1-62705-700-4
Verlag: Morgan & Claypool Publishers


A common feature of many approaches to modeling sensory statistics is an emphasis on capturing the ""average."" From early representations in the brain, to highly abstracted class categories in machine learning for classification tasks, central-tendency models based on the Gaussian distribution are a seemingly natural and obvious choice for modeling sensory data. However, insights from neuroscience, psychology, and computer vision suggest an alternate strategy: preferentially focusing representational resources on the extremes of the distribution of sensory inputs. The notion of treating extrema near a decision boundary as features is not necessarily new, but a comprehensive statistical theory of recognition based on extrema is only now just emerging in the computer vision literature. This book begins by introducing the statistical Extreme Value Theory (EVT) for visual recognition. In contrast to central-tendency modeling, it is hypothesized that distributions near decision boundaries form a more powerful model for recognition tasks by focusing coding resources on data that are arguably the most diagnostic features. EVT has several important properties: strong statistical grounding, better modeling accuracy near decision boundaries than Gaussian modeling, the ability to model asymmetric decision boundaries, and accurate prediction of the probability of an event beyond our experience. The second part of the book uses the theory to describe a new class of machine learning algorithms for decision making that are a measurable advance beyond the state-of-the-art. This includes methods for post-recognition score analysis, information fusion, multi-attribute spaces, and calibration of supervised machine learning algorithms.
Extreme Value Theory-Based Methods for Visual Recognition jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


- Preface
- Acknowledgments
- Figure Credits
- Extrema and Visual Recognition
- A Brief Introduction to Statistical Extreme Value Theory
- Post-recognition Score Analysis
- Recognition Score Normalization
- Calibration of Supervised Machine Learning Algorithms
- Summary and Future Directions
- Bibliography
- Author's Biography


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.