Introduction to Semi-Supervised Learning | Buch | 978-1-59829-547-4 | sack.de

Buch, Englisch, 130 Seiten, Paperback, Format (B × H): 187 mm x 235 mm

Reihe: Synthesis Lectures on Artificial Intelligence and Machine Learning

Introduction to Semi-Supervised Learning


Erscheinungsjahr 2009
ISBN: 978-1-59829-547-4
Verlag: Morgan & Claypool Publishers

Buch, Englisch, 130 Seiten, Paperback, Format (B × H): 187 mm x 235 mm

Reihe: Synthesis Lectures on Artificial Intelligence and Machine Learning

ISBN: 978-1-59829-547-4
Verlag: Morgan & Claypool Publishers


Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field.
Introduction to Semi-Supervised Learning jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


- Introduction to Statistical Machine Learning
- Overview of Semi-Supervised Learning
- Mixture Models and EM
- Co-Training
- Graph-Based Semi-Supervised Learning
- Semi-Supervised Support Vector Machines
- Human Semi-Supervised Learning
- Theory and Outlook


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.