Statistical Relational Artificial Intelligence | Buch | 978-1-68173-236-7 | sack.de

Buch, Englisch, 189 Seiten, Hardback, Format (B × H): 152 mm x 229 mm

Reihe: Synthesis Lectures on Artificial Intelligence and Machine Learning

Statistical Relational Artificial Intelligence

Logic, Probability, and Computation
Erscheinungsjahr 2016
ISBN: 978-1-68173-236-7
Verlag: Morgan & Claypool Publishers

Logic, Probability, and Computation

Buch, Englisch, 189 Seiten, Hardback, Format (B × H): 152 mm x 229 mm

Reihe: Synthesis Lectures on Artificial Intelligence and Machine Learning

ISBN: 978-1-68173-236-7
Verlag: Morgan & Claypool Publishers


An intelligent agent interacting with the real world will encounter individual people, courses, test results, drugs prescriptions, chairs, boxes, etc., and needs to reason about properties of these individuals and relations among them as well as cope with uncertainty.

Uncertainty has been studied in probability theory and graphical models, and relations have been studied in logic, in particular in the predicate calculus and its extensions. This book examines the foundations of combining logic and probability into what are called relational probabilistic models. It introduces representations, inference, and learning techniques for probability, logic, and their combinations.

The book focuses on two representations in detail: Markov logic networks, a relational extension of undirected graphical models and weighted first-order predicate calculus formula, and Problog, a probabilistic extension of logic programs that can also be viewed as a Turing-complete relational extension of Bayesian networks.
Statistical Relational Artificial Intelligence jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


- Preface
- Motivation
- Statistical and Relational AI Representations
- Relational Probabilistic Representations
- Representational Issues
- Inference in Propositional Models
- Inference in Relational Probabilistic Models
- Learning Probabilistic and Logical Models
- Learning Probabilistic Relational Models
- Beyond Basic Probabilistic Inference and Learning
- Conclusions
- Bibliography
- Authors' Biographies
- Index


Luc De Raedt, KU Leuven, Belgium.

Kristian Kersting Technical University of Dortmund, Germany.

Sriraam Natarajan, Indiana University, USA.

David Poole, University of British Columbia, Canada.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.