Buch, Englisch, 448 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 821 g
ISBN: 978-1-118-70074-7
Verlag: Wiley
This book is the first to combine computational material science and modeling of molecular solid states for pharmaceutical industry applications.
• Provides descriptive and applied state-of-the-art computational approaches and workflows to guide pharmaceutical solid state chemistry experiments and to support/troubleshoot API solid state selection
• Includes real industrial case examples related to application of modeling methods in problem solving
• Useful as a supplementary reference/text for undergraduate, graduate and postgraduate students in computational chemistry, pharmaceutical and biotech sciences, and materials science
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Chemie Anorganische Chemie Festkörperchemie
- Naturwissenschaften Chemie Chemie Allgemein Chemometrik, Chemoinformatik
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Pharmazeutische Technologie
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Biotechnologie Industrielle Biotechnologie
- Naturwissenschaften Chemie Chemie Allgemein Pharmazeutische Chemie, Medizinische Chemie
Weitere Infos & Material
List of Contributors xiii
Preface xvii
Editor’s biography xix
1 Computational Pharmaceutical Solid-State Chemistry: An Introduction 1
Yuriy A. Abramov
1.1 Introduction 1
1.2 Pharmaceutical Solid-State Landscape 2
1.2.1 Some Definitions 2
1.2.2 Impact of Solid-State Form on API and Product Properties 4
1.2.3 Challenges of Pharmaceutical Industry Related to Solid Form Selection 6
1.3 Pharmaceutical Computational Solid-State Chemistry 8
1.4 Conclusions 9
Acknowledgment 10
References 10
2 Navigating the Solid Form Landscape with Structural Informatics 15
Peter T. A. Galek, Elna Pidcock, Peter A. Wood, Neil Feeder, and Frank H. Allen
2.1 Introduction 15
2.2 The CSD System 17
2.3 Hydrogen-Bond Propensity: Theory and Applications to Polymorphism 18
2.3.1 Methodology 18
2.3.2 Case Study 1: Ritonavir 19
2.4 Hydrogen-Bond Landscapes: Developing the Propensity Approach 21
2.4.1 Methodology 21
2.4.2 Case Study 2: Metastable versus Stable Form of Piroxicam 22
2.4.3 Case Study 3: Exploring the Likely Hydrogen-Bond Landscape of Axitinib (Inlyta®) 25
2.5 Informatics-Based Cocrystal Screening 25
2.5.1 Methodology 25
2.5.2 Case Study 4: Paracetamol 26
2.5.3 Case Study 5: AMG 517 – Sorbic Acid Cocrystal 29
2.6 Conclusions and Outlook 32
References 33
3 Theoretical Hydrogen-Bonding Analysis for Assessment of Physical Stability of Pharmaceutical Solid Forms 37
Yuriy A. Abramov
3.1 Introduction 37
3.2 Experimental Scales of H-Bonding Basicity and Acidity 39
3.2.1 In Solution Phase 39
3.2.2 In Solid-State Phase 40
3.3 Theoretical Study of H-Bonding Strength in Solution and in Solid State 40
3.3.1 Supermolecular Approach 41
3.3.2 Descriptor-Based Approaches 41
3.3.3 Solid-State H-bonding Strength 42
3.4 Application to Solid For