Adhikari / Pedrycz | Data Analysis and Pattern Recognition in Multiple Databases | Buch | 978-3-319-37727-8 | sack.de

Buch, Englisch, Band 61, 238 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 3927 g

Reihe: Intelligent Systems Reference Library

Adhikari / Pedrycz

Data Analysis and Pattern Recognition in Multiple Databases


Softcover Nachdruck of the original 1. Auflage 2014
ISBN: 978-3-319-37727-8
Verlag: Springer International Publishing

Buch, Englisch, Band 61, 238 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 3927 g

Reihe: Intelligent Systems Reference Library

ISBN: 978-3-319-37727-8
Verlag: Springer International Publishing


Pattern recognition in data is a well known classical problem that falls under the ambit of data analysis. As we need to handle different data, the nature of patterns, their recognition and the types of data analyses are bound to change. Since the number of data collection channels increases in the recent time and becomes more diversified, many real-world data mining tasks can easily acquire multiple databases from various sources. In these cases, data mining becomes more challenging for several essential reasons. We may encounter sensitive data originating from different sources - those cannot be amalgamated. Even if we are allowed to place different data together, we are certainly not able to analyze them when local identities of patterns are required to be retained. Thus, pattern recognition in multiple databases gives rise to a suite of new, challenging problems different from those encountered before. Association rule mining, global pattern discovery and mining patterns of select items provide different patterns discovery techniques in multiple data sources. Some interesting item-based data analyses are also covered in this book. Interesting patterns, such as exceptional patterns, icebergs and periodic patterns have been recently reported. The book presents a thorough influence analysis between items in time-stamped databases. The recent research on mining multiple related databases is covered while some previous contributions to the area are highlighted and contrasted with the most recent developments.

Adhikari / Pedrycz Data Analysis and Pattern Recognition in Multiple Databases jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


From the Contents: Synthesizing Different Extreme Association Rules in Multiple Data Sources.- Clustering items in time-stamped databases induced by stability.- Mining global patterns in multiple large databases.- Clustering Local Frequency Items in Multiple Data Sources.- Mining Patterns of Select Items in Different Data Sources.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.