Buch, Englisch, 388 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 764 g
Reihe: Problem Books in Mathematics
Buch, Englisch, 388 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 764 g
Reihe: Problem Books in Mathematics
ISBN: 978-3-030-26383-6
Verlag: Springer International Publishing
This book highlights an unprecedented number of real-life applications of differential equations together with the underlying theory and techniques. The problems and examples presented here touch on key topics in the discipline, including first order (linear and nonlinear) differential equations, second (and higher) order differential equations, first order differential systems, the Runge–Kutta method, and nonlinear boundary value problems. Applications include growth of bacterial colonies, commodity prices, suspension bridges, spreading rumors, modeling the shape of a tsunami, planetary motion, quantum mechanics, circulation of blood in blood vessels, price-demand-supply relations, predator-prey relations, and many more.
Upper undergraduate and graduate students in Mathematics, Physics and Engineering will find this volume particularly useful, both for independent study and as supplementary reading. While many problems can be solved at the undergraduate level, a numberof challenging real-life applications have also been included as a way to motivate further research in this vast and fascinating field.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Mathematische Analysis Elementare Analysis und Allgemeine Begriffe
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
Weitere Infos & Material
1. First Order Linear Differential Equations.- 2. Some First Order Nonlinear Differential Equations.- 3. Second and Higher Order Differential Equations.- 4. Power Series Solutions.- 5. Systems of First Order Linear Differential Equations.- 6. Runge–Kutta Method.- 7. Stability Theory.- 8. Linear Boundary Value Problems.- 9. Nonlinear Boundary Value Problems.- Index.