E-Book, Englisch, 516 Seiten
Ahmad / Pichtel Microbes and Microbial Technology
1. Auflage 2011
ISBN: 978-1-4419-7931-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Agricultural and Environmental Applications
E-Book, Englisch, 516 Seiten
ISBN: 978-1-4419-7931-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book focuses on successful application of microbial biotechnology in areas such as medicine, agriculture, environment and human health.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;About the Editors;10
3;Contents;12
4;Contributors;14
5;Chapter 1: Microbial Applications in Agriculture and the Environment: A Broad Perspective;18
5.1;1.1 Introduction;19
5.2;1.2 Approaches to Studying Soil Microbial Populations;20
5.2.1;1.2.1 Cultivation-Based Methods;20
5.2.2;1.2.2 Cultivation-Independent Methods;21
5.3;1.3 Functional Diversity of Microbes;21
5.4;1.4 Application in Agriculture and the Environment;21
5.4.1;1.4.1 Microbes in Plant Growth Promotion and Health Protection;22
5.4.1.1;1.4.1.1 Plant Growth-Promoting Fungi;24
5.4.2;1.4.2 Microbes in Environmental Problem Management;25
5.4.2.1;1.4.2.1 PAH Degradation;27
5.4.2.2;1.4.2.2 Microbes in Metal Removal from Water;28
5.4.2.3;1.4.2.3 PGPR in Biomanagement of Metal Toxicity;28
5.5;1.5 Microbial Biosensors and Their Applications;29
5.6;1.6 Microbes and Nanoparticles;30
5.6.1;1.6.1 Fungi in Nanoparticle Synthesis;32
5.7;1.7 Other New Applications;33
5.7.1;1.7.1 Microbes and Climate Change;33
5.7.2;1.7.2 Probiotics and Health;34
5.8;1.8 Conclusion;36
5.9;References;36
6;Chapter 2: Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment;45
6.1;2.1 Introduction;46
6.2;2.2 Culture Methods in Microbial Ecology: Applications and Limitations;47
6.3;2.3 Molecular Methods of Microbial Community Analyses;48
6.3.1;2.3.1 Partial Community Analysis Approaches;49
6.3.1.1;2.3.1.1 Clone Library Method;49
6.3.1.2;2.3.1.2 Genetic Fingerprinting Techniques;50
6.3.1.2.1;Denaturing- or Temperature-Gradient Gel Electrophoresis;50
6.3.1.2.2;Single-Strand Conformation Polymorphism;51
6.3.1.2.3;Random Amplified Polymorphic DNA and DNA Amplification Fingerprinting;51
6.3.1.2.4;Amplified Ribosomal DNA Restriction Analysis;52
6.3.1.2.5;Terminal Restriction Fragment Length Polymorphism;52
6.3.1.2.6;Length Heterogeneity PCR;53
6.3.1.2.7;Ribosomal Intergenic Spacer Analysis;54
6.3.1.3;2.3.1.3 DNA Microarrays;54
6.3.1.3.1;16S rRNA gene Microarrays (PhyloChip);55
6.3.1.3.2;Functional Gene Arrays;55
6.3.1.4;2.3.1.4 Quantitative PCR;55
6.3.1.5;2.3.1.5 Fluorescence In Situ Hybridization;56
6.3.1.6;2.3.1.6 Microbial Lipid Analysis;57
6.3.2;2.3.2 Whole Community Analysis Approaches;57
6.3.2.1;2.3.2.1 DNA–DNA Hybridization Kinetics;58
6.3.2.2;2.3.2.2 Guanine-Plus-Cytosine Content Fractionation;58
6.3.2.3;2.3.2.3 Whole-Microbial-Genome Sequencing;59
6.3.2.4;2.3.2.4 Metagenomics;60
6.4;2.4 Next-Generation DNA Sequencing Techniques Transform Microbial Ecology;61
6.5;2.5 Functional Microbial Ecology: Linking Community Structure and Function;63
6.5.1;2.5.1 Stable Isotope Probing;63
6.5.2;2.5.2 Microautoradiography;64
6.5.3;2.5.3 Isotope Array;65
6.6;2.6 Postgenomic Approaches;65
6.6.1;2.6.1 Metaproteomics;66
6.6.2;2.6.2 Proteogenomics;67
6.6.3;2.6.3 Metatranscriptomics;67
6.7;2.7 Bias in Molecular Community Analysis Methods;68
6.8;2.8 Concluding Remarks and Future Directions;69
6.9;References;70
7;Chapter 3: The Biofilm Returns: Microbial Life at the Interface;74
7.1;3.1 Introduction;75
7.2;3.2 Biofilm: A Definition;76
7.3;3.3 Mechanism of Biofilm Formation;76
7.4;3.4 Biofilm Properties: Influence on Biofilm-Based Technologies;77
7.4.1;3.4.1 Extracellular Polymeric Substances: Role in Biofilm Reactor Performance;77
7.4.2;3.4.2 Biofilm Architecture: Role in Biofilm Reactor Performance;78
7.4.3;3.4.3 Quorum Sensing: Role in Bioreactor Cleanup;78
7.4.4;3.4.4 Antimicrobial Resistance: Role in Bioreactor Cleanup;78
7.4.5;3.4.5 Gene Transfer Within Biofilms: Role in Bioremediation;79
7.4.6;3.4.6 External Electron Transfer in Biofilms: Role in MFC Function;79
7.5;3.5 Application of Biofilms;79
7.5.1;3.5.1 Biofilms as Biocontrol Agents;79
7.5.1.1;3.5.1.1 Gram-Positive Bacterial Biofilms as Biocontrol Agents;80
7.5.2;3.5.2 Biofilms as Corrosion Inhibitors;80
7.5.2.1;3.5.2.1 Corrosion Inhibition by Biofilm Through Oxygen Removal;81
7.5.2.2;3.5.2.2 Corrosion Inhibition by Biofilms Secreting Antimicrobials;81
7.5.2.3;3.5.2.3 Corrosion Inhibition with Biofilms Secreting Corrosion Inhibitors;81
7.5.2.4;3.5.2.4 Corrosion Inhibition Through Protective Layers (Biofilm Matrix);81
7.6;3.6 Biofilm-Based Technologies;82
7.6.1;3.6.1 Biofilm Reactors;82
7.6.1.1;3.6.1.1 Biofilm Reactors in Wastewater and Waste Gas Treatment;84
7.6.1.2;3.6.1.2 Biofilm Reactors in Bioremediation Process;84
7.6.1.2.1;Bioremediation of Hydrocarbons;87
7.6.1.2.2;Bioremediation of Heavy Metals;87
7.6.1.3;3.6.1.3 Biofilm Reactors in Productive Biocatalysis;89
7.6.2;3.6.2 Microbial Fuel Cells;91
7.6.2.1;3.6.2.1 Marine MFCs;92
7.6.2.2;3.6.2.2 Wastewater MFCs;92
7.6.2.3;3.6.2.3 Farm Field MFCs;92
7.6.2.4;3.6.2.4 Photosynthetic MFCs;92
7.6.2.5;3.6.2.5 Applications of MFCs;93
7.7;References;94
8;Chapter 4: Future Application of Probiotics: A Boon from Dairy Biology;101
8.1;4.1 Introduction;101
8.2;4.2 Probiotics as Antibiotics or Lactobiotics;102
8.3;4.3 LAB as an Immune Enhancer;103
8.4;4.4 Probiotics and GALT Immunity;104
8.5;4.5 The Demise of the Needle;107
8.5.1;4.5.1 Malaria;107
8.5.2;4.5.2 AIDS;108
8.5.3;4.5.3 Infantile Diarrhea;108
8.5.4;4.5.4 Trichomoniasis;109
8.5.5;4.5.5 Ischemic Heart Diseases;109
8.5.6;4.5.6 Gastritis, Peptic Ulcer, and Gastric Adenocarcinoma;110
8.6;4.6 Conclusion/Future Recommendations;110
8.7;References;111
9;Chapter 5: Microbially Synthesized Nanoparticles: Scope and Applications;115
9.1;5.1 Introduction;116
9.2;5.2 Nanoparticle Synthesis by Bacteria;118
9.2.1;5.2.1 Silver Nanoparticles;118
9.2.2;5.2.2 Gold Nanoparticles;120
9.2.3;5.2.3 Magnetic Nanoparticles;123
9.2.4;5.2.4 Uranium Nanoparticles;124
9.2.5;5.2.5 Cadmium Nanoparticles;125
9.2.6;5.2.6 Selenium Nanoparticles;126
9.2.7;5.2.7 Titanium, Platinum, and Palladium Nanoparticles;127
9.3;5.3 Nanoparticle Biosynthesis by Actinomycetes;128
9.4;5.4 Nanoparticle Biosynthesis by Cyanobacteria;128
9.5;5.5 Nanoparticle Biosynthesis by Yeast;128
9.6;5.6 Nanoparticle Biosynthesis by Fungi;129
9.7;5.7 Scope and Applications of Nanoparticles;131
9.8;5.8 Conclusions;133
9.9;References;133
10;Chapter 6: Bacterial Quorum Sensing and Its Interference: Methods and Significance;141
10.1;6.1 Introduction;141
10.2;6.2 Quorum Sensing Pathways in Bacteria;142
10.2.1;6.2.1 Autoinducer Type 1 Signaling System;142
10.2.2;6.2.2 Autoinducer Type 2 Signaling System;143
10.2.3;6.2.3 Autoinducer Type 3 System;144
10.2.4;6.2.4 Short Peptide Signaling (AIP) System in Gram-Positive Bacteria;144
10.3;6.3 QS Signal Molecules Diversity;144
10.3.1;6.3.1 Gram-Negative Bacteria;145
10.4;6.4 QS-Regulated Bacterial Traits;147
10.5;6.5 Isolation, Purification, and Characterization of AHL Molecules;148
10.6;6.6 Assays for AHL Detection;148
10.6.1;6.6.1 Detection Through Bioassays;148
10.6.2;6.6.2 Chemical Detection;149
10.6.3;6.6.3 Application of Microbial and Chemical Assays;150
10.7;6.7 Interferences in Bacterial Quorum Sensing;153
10.7.1;6.7.1 Inhibition of AHL-Mediated QS;154
10.7.1.1;6.7.1.1 Inhibition of Signal Molecule Biosynthesis;154
10.7.1.2;6.7.1.2 Blocking Signal Transduction;155
10.7.1.2.1;Synthetic Analogues for Quorum Sensing Autoinducers;155
10.7.1.2.2;Modification of the Acyl Side Chain;157
10.7.1.2.3;Modification of the Lactone Ring;158
10.7.1.2.4;Simultaneous Modifications on Both the Lactone Ring and Side Chain;158
10.7.1.3;6.7.1.3 Chemical Inactivation and Biodegradation of Signal Molecules;158
10.7.1.3.1;Chemical Inactivation;159
10.7.1.3.2;Biodegradation;159
10.7.2;6.7.2 Inhibition of Other Quorum-Sensing Systems;160
10.7.3;6.7.3 Quorum-Sensing Inhibitors Expressed by Higher Organisms;160
10.7.3.1;6.7.3.1 Inhibition of QS by Halogenated Furanone Compounds;161
10.7.3.2;6.7.3.2 Inhibition of QS by Plant Products;163
10.7.4;6.7.4 Practical Significance of Bacterial QS Modulation in the Environment/Agriculture;164
10.7.4.1;6.7.4.1 Roles of AHL-Degradation Enzymes in Host;164
10.7.4.2;6.7.4.2 Biotechnological and Pharmaceutical Implications of AHL Degradation Enzymes;164
10.7.4.3;6.7.4.3 Transgenic Plants;165
10.8;6.8 Conclusion;166
10.9;References;167
11;Chapter 7: Horizontal Gene Transfer Between Bacteria Under Natural Conditions;176
11.1;7.1 Introduction;176
11.2;7.2 Horizontal Gene Transfer in Soil, Sediments, and Other Solid Surfaces;177
11.2.1;7.2.1 Environmental Factors Affecting HGT in Nature;178
11.2.2;7.2.2 Tools to Study Horizontal Gene Transfer in the Environment;178
11.3;7.3 Plasmid-Mediated Gene Mobilization in Soil;179
11.3.1;7.3.1 Horizontal Gene Transfer in Metal- and Radionuclide-Contaminated Soils and Sediments;180
11.3.2;7.3.2 Horizontal Gene Transfer in Mixed Waste Sites;182
11.3.3;7.3.3 Horizontal Gene Transfer in Agricultural Soils;183
11.4;7.4 Horizontal Gene Transfer in Aquatic Environments;185
11.4.1;7.4.1 Evidence of Plasmid Transfer in Aquatic Environments;185
11.4.2;7.4.2 Evidence of Plasmid Transfer in Sewage Filter Beds and Activated Sludge Units;186
11.5;7.5 Modeling of Conjugative Plasmid Transfer;186
11.6;7.6 Monitoring Horizontal Gene Transfer and Assessing Transfer Frequencies;188
11.7;7.7 Spread of Biodegradation Traits;189
11.8;7.8 Conclusions;191
11.9;7.9 Future Recommendations;191
11.10;References;192
12;Chapter 8: Molecular Strategies: Detection of Foodborne Bacterial Pathogens;201
12.1;8.1 Introduction;201
12.2;8.2 Molecular Typing Methods for the Detection of Bacterial Pathogens;203
12.2.1;8.2.1 PCR-Based Detection Methods;203
12.2.1.1;8.2.1.1 Multiplex PCR and Real-Time PCR;203
12.2.1.2;8.2.1.2 Random Amplified Polymorphic DNA;205
12.2.1.3;8.2.1.3 Restriction Fragment Length Polymorphism;205
12.2.1.4;8.2.1.4 Amplified Fragment Length Polymorphism;206
12.2.2;8.2.2 Pulsed-Field Gel Electrophoresis;207
12.2.3;8.2.3 Biosensors;208
12.2.4;8.2.4 Microarrays;209
12.2.5;8.2.5 Integrated Systems;210
12.3;8.3 Conclusions and Future Prospectives;211
12.4;References;213
13;Chapter 9: Recent Advances in Bioremediation of Contaminated Soil and Water Using Microbial Surfactants;219
13.1;9.1 Introduction;219
13.2;9.2 Microbial Surfactants/Biosurfactants;220
13.2.1;9.2.1 Sources and Types of Biosurfactants;220
13.2.2;9.2.2 Important Properties of Biosurfactants;223
13.2.3;9.2.3 Surface and Interfacial Tension Reduction;223
13.2.4;9.2.4 Emulsification and De-emulsification Activity;224
13.2.5;9.2.5 Biodegradability;224
13.2.6;9.2.6 Low Toxicity;224
13.3;9.3 Remediation of Contaminated Soil and Water Using Different Physical, Chemical, and Biological Techniques;225
13.3.1;9.3.1 Physical Techniques;225
13.3.2;9.3.2 Chemical Techniques;225
13.3.3;9.3.3 Biological Techniques or Bioremediation;226
13.3.3.1;9.3.3.1 Ex Situ Bioremediation;227
13.4;9.4 Bioremediation of Contaminated Soil and Water Using Biosurfactants;228
13.4.1;9.4.1 Hydrocarbons;228
13.4.2;9.4.2 Polycyclic Aromatic Hydrocarbons;228
13.4.3;9.4.3 Petroleum Hydrocarbons;229
13.4.4;9.4.4 Pesticides and Herbicides;231
13.4.5;9.4.5 Heavy Metals;233
13.5;9.5 Recent Advances in Bioremediation Processes Using Biosurfactants and Future Prospects;235
13.5.1;9.5.1 Use of Immobilized Microorganisms and Contaminants;235
13.5.2;9.5.2 Novel Strains for Producing Biosurfactants;236
13.6;9.6 Applications of Biosurfactants in Agriculture;236
13.7;9.7 Conclusion;236
13.8;References;237
14;Chapter 10: Bioaugmentation-Assisted Phytoextraction Applied to Metal-Contaminated Soils: State of the Art and Future Prospect;241
14.1;10.1 Introduction;241
14.2;10.2 Mechanisms Driving Metal Extraction in Plant–Microorganism Systems;242
14.2.1;10.2.1 Metal Bioaccessibility as a Result of Microbial Mechanisms;243
14.2.2;10.2.2 Mechanisms Controlling Metal Uptake by Plants;244
14.3;10.3 Practical Issues and Recommendations with Phytoextraction-Assisted Bioaugmentation;245
14.3.1;10.3.1 Mutualistic and Symbiotic Relationships with Plants;245
14.3.2;10.3.2 Microbial Consortia;247
14.3.3;10.3.3 Factors Impairing Bioaugmentation Success;247
14.3.4;10.3.4 Genetically Engineered Microorganisms;248
14.4;10.4 Plants;248
14.4.1;10.4.1 Hyperaccumulators vs. High-Biomass Species;248
14.4.2;10.4.2 Mobilization of Metals by Plants: The Role of Siderophores and Phytosiderophores;249
14.4.3;10.4.3 Plant Development;250
14.4.4;10.4.4 Genetically Engineered Plants;250
14.5;10.5 Practical Recommendations for Selection of Plant–Microorganism Couples and Implementation of the Bioaugmentation-Phytoextraction Technique;251
14.5.1;10.5.1 Strategy for Choosing the Most Relevant Plant–Microorganism Couples;251
14.5.2;10.5.2 Preculture Conditions of Microbial Inoculants;255
14.5.3;10.5.3 Selection and Bioaugmentation with Consortia: More Efficient than Pure Culture?;255
14.5.4;10.5.4 Microbial Inoculant Formulations and Management;256
14.5.5;10.5.5 Culture Duration and Planting Density;257
14.5.6;10.5.6 Experiments on Field Scale;258
14.5.7;10.5.7 Economic Aspects of the Technique;258
14.6;10.6 Methods for a Better Understanding of the Mechanisms Involved in Bioaugmentation-Phytoextraction Processes;258
14.6.1;10.6.1 Methods for Inoculant Monitoring, Microbial Biodiversity, and Microbial Activity;258
14.6.2;10.6.2 Physicochemical and Biological Methods to Estimate Metal Bioavailability;260
14.7;10.7 Efficiency of Phytoextraction-Assisted Bioaugmentation;261
14.7.1;10.7.1 Evaluation of Phytoextraction Efficiency Must Incorporate Several Parameters;261
14.7.1.1;10.7.1.1 Plant Parameters;261
14.7.1.2;10.7.1.2 Microbial Parameters;262
14.7.1.3;10.7.1.3 Efficiency of Phytoextraction-Assisted Bioaugmentation;262
14.8;10.8 Environmental Aspects;263
14.9;10.9 Future Prospects;263
14.10;References;266
15;Chapter 11: Biosorption of Uranium for Environmental Applications Using Bacteria Isolated from the Uranium Deposits;279
15.1;11.1 Introduction;279
15.2;11.2 Screening of Microorganisms Isolated from U Deposits for Their U Accumulating Ability;280
15.2.1;11.2.1 Factors Affecting U Accumulation by Bacteria;281
15.2.2;11.2.2 Effect of pH on U Accumulation;281
15.2.3;11.2.3 Effect of U Concentration on U Absorption;283
15.2.4;11.2.4 Time Course of U Accumulation;285
15.2.5;11.2.5 Release of U from Cells by Washing with EDTA;286
15.2.6;11.2.6 Distribution of U in Microbial Cells;286
15.2.7;11.2.7 Selective Accumulation of U Using Arthrobacter, US-10 Cells;288
15.3;11.3 Accumulation of Th and Selective Accumulation of Th and U by Bacteria;288
15.3.1;11.3.1 Recovery of U by Immobilized Bacteria;290
15.3.2;11.3.2 Removal of U from U Refining Wastewater by Bacteria;290
15.3.3;11.3.3 Removal of U from Seawater by Bacteria;292
15.4;11.4 Conclusion;292
15.5;References;293
16;Chapter 12: Bacterial Biosorption: A Technique for Remediation of Heavy Metals;294
16.1;12.1 Introduction;295
16.2;12.2 Bacterial Biosorbents;295
16.2.1;12.2.1 Bacterial Structure;296
16.3;12.3 Mechanisms of Biosorption;300
16.4;12.4 Techniques Used in Metal Biosorption Studies;302
16.5;12.5 Factors Affecting Heavy Metal Biosorption;302
16.5.1;12.5.1 pH;302
16.5.2;12.5.2 Temperature;304
16.5.3;12.5.3 Initial Metal Ion Concentration;304
16.5.4;12.5.4 Initial Concentration of Biosorbent;304
16.5.5;12.5.5 Presence of Competing Ions;305
16.6;12.6 Development of Bacterial Biosorbents;306
16.7;12.7 Biosorption and Equilibrium Studies of Heavy Metals;307
16.7.1;12.7.1 Freundlich Isotherm;307
16.7.2;12.7.2 Langmuir Isotherm;308
16.7.3;12.7.3 Temkin Isotherm;310
16.7.4;12.7.4 Dubinin–Radushkevich Equation;310
16.7.5;12.7.5 Brunauer–Emmer–Teller (BET) Model;311
16.7.6;12.7.6 Redlich–Paterson Isotherm;311
16.7.7;12.7.7 Multicomponent Heavy Metals Biosorption;312
16.8;12.8 Kinetics of Heavy Metal Biosorption;312
16.8.1;12.8.1 Pseudo-First-Order Kinetics;313
16.8.2;12.8.2 Pseudo-Second-Order Kinetics;314
16.8.3;12.8.3 The Weber and Morris Sorption Kinetic Model;315
16.8.4;12.8.4 First-Order Reversible Reaction Model;315
16.9;12.9 Immobilization of Bacteria;316
16.10;12.10 Desorption of Heavy Metals;317
16.11;12.11 Biosorption and Its Column Performance;318
16.11.1;12.11.1 Column Regeneration;320
16.11.2;12.11.2 Sorption Column Model;320
16.12;12.12 Conclusion;321
16.13;12.13 Future Prospects;322
16.14;References;322
17;Chapter 13:Metal Tolerance and Biosorption Potentialof Soil Fungi: Applications for a Greenand Clean Water Treatment Technology;331
17.1;13.1 Introduction;331
17.2;13.2 Soil Fungi and Their Diversity;333
17.3;13.3 Heavy Metal Pollution in Water and Soil;335
17.4;13.4 Metal–Fungi Interactions and Development of Metal Resistance/Tolerance;337
17.5;13.5 Mechanisms of Metal Resistance and Tolerance;338
17.5.1;13.5.1 Metal Solubilization;339
17.5.2;13.5.2 Metal Immobilization;341
17.5.3;13.5.3 Metal Transformations;341
17.6;13.6 Biosorption;341
17.6.1;13.6.1 Biosorbents;342
17.6.2;13.6.2 Metal Binding to Cell Walls;343
17.6.2.1;13.6.2.1 Skeletal Elements;343
17.6.2.2;13.6.2.2 Matrix Components;343
17.6.2.3;13.6.2.3 Miscellaneous Components;343
17.6.3;13.6.3 Transport of Toxic Metal Cations;344
17.6.4;13.6.4 Metal Uptake by Living Cells;344
17.6.5;13.6.5 Intracellular Fate of Toxic Metals;344
17.6.6;13.6.6 Metal Transformations Within Fungi;345
17.6.7;13.6.7 Metal Sorption by Dead Cells;346
17.6.8;13.6.8 Mechanism of Biosorption;346
17.6.8.1;13.6.8.1 Extracellular Accumulation/Precipitation;346
17.6.8.2;13.6.8.2 Cell Surface Sorption/Precipitation;347
17.6.8.3;13.6.8.3 Intracellular Accumulation/Precipitation;348
17.6.9;13.6.9 Factors Affecting Heavy Metal Biosorption;349
17.6.9.1;13.6.9.1 Biomass Pretreatment Effect on Biosorption;349
17.7;13.7 Biosorption Potential of Fungal Biomass;350
17.8;13.8 Conclusions;357
17.9;References;358
18;Chapter 14:Rhizosphere and Root Colonization by BacterialInoculants and Their Monitoring Methods:A Critical Area in PGPR Research;372
18.1;14.1 Introduction;373
18.2;14.2 The Rhizosphere and Rhizospheric Effect;374
18.2.1;14.2.1 Rhizosphere Colonization;375
18.2.2;14.2.2 Competition for Root Niches and Bacterial Determinants Directly Involves Root Colonization;376
18.2.3;14.2.3 Biofilms in the Rhizosphere;377
18.2.4;14.2.4 Factors Affecting Root Colonization and Efficacy of Rhizobacteria;379
18.3;14.3 Monitoring of Microbial Inoculants (Biocontrol Agents/PGPR);380
18.3.1;14.3.1 Microbiological Monitoring Methods;380
18.3.2;14.3.2 Direct Monitoring Methods;382
18.3.3;14.3.3 Molecular Monitoring Methods;383
18.3.4;14.3.4 Use of Reporter Genes;385
18.3.5;14.3.5 Green Fluorescent Protein;386
18.3.6;14.3.6 Lac Z and Lux Gene-Based Reporting Methods;387
18.3.7;14.3.7 Luciferase Gene;389
18.4;14.4 Conclusions and Future Prospects;389
18.5;References;391
19;Chapter 15: Pesticide Interactions with Soil Microflora: Importance in Bioremediation;401
19.1;15.1 Introduction;401
19.2;15.2 Toxicity of Pesticides to Soil Microorganisms and Plants;402
19.2.1;15.2.1 Insecticidal Impact on Rhizobacteria and Crops;402
19.3;15.3 Bioremediation;406
19.3.1;15.3.1 Bioremediation of Insecticides;408
19.3.1.1;15.3.1.1 Lindane and Its Isomers;409
19.3.1.1.1;Anaerobic Biodegradation Pathway;409
19.3.1.1.2;Aerobic Biodegradation Pathway;410
19.3.1.2;15.3.1.2 Biodegradation of Chlorpyrifos;412
19.3.1.3;15.3.1.3 Monocrotophos;415
19.4;15.4 Conclusion;417
19.5;References;418
20;Chapter 16: Baculovirus Pesticides: Present State and Future Perspectives;422
20.1;16.1 Introduction;423
20.2;16.2 State of Taxonomy and Biology of Baculoviruses;423
20.2.1;16.2.1 Taxonomy;423
20.2.2;16.2.2 Viral Life Cycle;424
20.2.3;16.2.3 Molecular Biology of Baculoviruses;426
20.3;16.3 Baculovirus Production Technology;429
20.3.1;16.3.1 In Vivo Production;429
20.3.2;16.3.2 In Vitro Production;429
20.4;16.4 Use of Baculoviruses for Pest Control;431
20.4.1;16.4.1 Use of the Alphabaculovirus of Anticarsia gemmatalis (AgMNPV) in Brazil and Latin America: A Case Study;434
20.4.1.1;16.4.1.1 Historical Perspective;434
20.4.1.2;16.4.1.2 AgMNPV Field Production;436
20.4.1.3;16.4.1.3 AgMNPV Commercial Laboratory Production: A Breakthrough;437
20.4.1.4;16.4.1.4 Why Did the AgMNPV Program Experience a Setback in Brazil?;438
20.5;16.5 Factors Limiting Baculovirus Use;438
20.6;16.6 Genetically Modified Baculoviruses to Control Insects;439
20.7;16.7 Final Considerations and Further Prospects on Use of Baculoviruses as Biopesticides;444
20.8;References;445
21;Chapter 17: Fungal Bioinoculants for Plant Disease Management;453
21.1;17.1 Introduction;453
21.1.1;17.1.1 Management of Plant Diseases;455
21.1.1.1;17.1.1.1 Biological Control;456
21.1.1.1.1;Bioinoculant Fungi and Mechanisms of Action;456
21.1.1.1.1.1;Fungistatic;457
21.1.1.1.1.2;Competition for Nutrients;458
21.1.1.1.1.3;Antibiosis;459
21.1.1.1.1.4;Mycoparasitism;460
21.1.1.1.1.5;Stimulation of Host Defense Response;461
21.1.1.1.2;Fungal Diseases and Their Management by Bioinoculants;462
21.1.1.1.2.1;In Vitro;463
21.1.1.1.2.2;Pot Culture;464
21.1.1.1.2.3;Field Conditions;465
21.1.1.1.2.4;Bioinoculants in IPM;467
21.1.1.1.3;Bacterial Diseases and Their Management;467
21.1.1.1.4;Nematode Diseases and Their Management;469
21.1.1.1.4.1;In Vitro Studies;471
21.1.1.1.4.2;Pot Conditions;473
21.1.1.1.4.3;Field Conditions;474
21.1.2;17.1.2 Production Technology of Bioinoculants;475
21.1.2.1;17.1.2.1 Pellet Formulations;475
21.1.2.2;17.1.2.2 Powder Formulations;476
21.1.2.3;17.1.2.3 Liquid Formulations;480
21.2;17.2 Conclusion;482
21.2.1;17.2.1 Future Recommendations;483
21.3;References;483
22;Chapter 18: Mycorrhizal Inoculants: Progress in Inoculant Production Technology;495
22.1;18.1 Introduction;496
22.2;18.2 Inocula Production of AM Fungi;496
22.2.1;18.2.1 Soil-Based Systems;497
22.2.2;18.2.2 Soil-Less Techniques;498
22.2.2.1;18.2.2.1 Aeroponic Culture;498
22.2.2.2;18.2.2.2 Monoxenic Culture;498
22.2.2.3;18.2.2.3 Nutrient Film Technique;499
22.2.2.4;18.2.2.4 Polymer-Based Inoculum;500
22.2.2.5;18.2.2.5 Integrated Method;500
22.3;18.3 Storage of AM Inocula;501
22.4;18.4 Inocula Production of Ectomycorrhizal Fungi;502
22.4.1;18.4.1 Formulation of ECM;505
22.4.2;18.4.2 Storage of ECM;506
22.5;18.5 Discussion;507
22.6;References;508
23;Index;513




