Ahmad / Pichtel | Microbes and Microbial Technology | E-Book | www.sack.de
E-Book

E-Book, Englisch, 516 Seiten

Ahmad / Pichtel Microbes and Microbial Technology

Agricultural and Environmental Applications
1. Auflage 2011
ISBN: 978-1-4419-7931-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Agricultural and Environmental Applications

E-Book, Englisch, 516 Seiten

ISBN: 978-1-4419-7931-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book focuses on successful application of microbial biotechnology in areas such as medicine, agriculture, environment and human health.

Ahmad / Pichtel Microbes and Microbial Technology jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;About the Editors;10
3;Contents;12
4;Contributors;14
5;Chapter 1: Microbial Applications in Agriculture and the Environment: A Broad Perspective;18
5.1;1.1 Introduction;19
5.2;1.2 Approaches to Studying Soil Microbial Populations;20
5.2.1;1.2.1 Cultivation-Based Methods;20
5.2.2;1.2.2 Cultivation-Independent Methods;21
5.3;1.3 Functional Diversity of Microbes;21
5.4;1.4 Application in Agriculture and the Environment;21
5.4.1;1.4.1 Microbes in Plant Growth Promotion and Health Protection;22
5.4.1.1;1.4.1.1 Plant Growth-Promoting Fungi;24
5.4.2;1.4.2 Microbes in Environmental Problem Management;25
5.4.2.1;1.4.2.1 PAH Degradation;27
5.4.2.2;1.4.2.2 Microbes in Metal Removal from Water;28
5.4.2.3;1.4.2.3 PGPR in Biomanagement of Metal Toxicity;28
5.5;1.5 Microbial Biosensors and Their Applications;29
5.6;1.6 Microbes and Nanoparticles;30
5.6.1;1.6.1 Fungi in Nanoparticle Synthesis;32
5.7;1.7 Other New Applications;33
5.7.1;1.7.1 Microbes and Climate Change;33
5.7.2;1.7.2 Probiotics and Health;34
5.8;1.8 Conclusion;36
5.9;References;36
6;Chapter 2: Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment;45
6.1;2.1 Introduction;46
6.2;2.2 Culture Methods in Microbial Ecology: Applications and Limitations;47
6.3;2.3 Molecular Methods of Microbial Community Analyses;48
6.3.1;2.3.1 Partial Community Analysis Approaches;49
6.3.1.1;2.3.1.1 Clone Library Method;49
6.3.1.2;2.3.1.2 Genetic Fingerprinting Techniques;50
6.3.1.2.1;Denaturing- or Temperature-Gradient Gel Electrophoresis;50
6.3.1.2.2;Single-Strand Conformation Polymorphism;51
6.3.1.2.3;Random Amplified Polymorphic DNA and DNA Amplification Fingerprinting;51
6.3.1.2.4;Amplified Ribosomal DNA Restriction Analysis;52
6.3.1.2.5;Terminal Restriction Fragment Length Polymorphism;52
6.3.1.2.6;Length Heterogeneity PCR;53
6.3.1.2.7;Ribosomal Intergenic Spacer Analysis;54
6.3.1.3;2.3.1.3 DNA Microarrays;54
6.3.1.3.1;16S rRNA gene Microarrays (PhyloChip);55
6.3.1.3.2;Functional Gene Arrays;55
6.3.1.4;2.3.1.4 Quantitative PCR;55
6.3.1.5;2.3.1.5 Fluorescence In Situ Hybridization;56
6.3.1.6;2.3.1.6 Microbial Lipid Analysis;57
6.3.2;2.3.2 Whole Community Analysis Approaches;57
6.3.2.1;2.3.2.1 DNA–DNA Hybridization Kinetics;58
6.3.2.2;2.3.2.2 Guanine-Plus-Cytosine Content Fractionation;58
6.3.2.3;2.3.2.3 Whole-Microbial-Genome Sequencing;59
6.3.2.4;2.3.2.4 Metagenomics;60
6.4;2.4 Next-Generation DNA Sequencing Techniques Transform Microbial Ecology;61
6.5;2.5 Functional Microbial Ecology: Linking Community Structure and Function;63
6.5.1;2.5.1 Stable Isotope Probing;63
6.5.2;2.5.2 Microautoradiography;64
6.5.3;2.5.3 Isotope Array;65
6.6;2.6 Postgenomic Approaches;65
6.6.1;2.6.1 Metaproteomics;66
6.6.2;2.6.2 Proteogenomics;67
6.6.3;2.6.3 Metatranscriptomics;67
6.7;2.7 Bias in Molecular Community Analysis Methods;68
6.8;2.8 Concluding Remarks and Future Directions;69
6.9;References;70
7;Chapter 3: The Biofilm Returns: Microbial Life at the Interface;74
7.1;3.1 Introduction;75
7.2;3.2 Biofilm: A Definition;76
7.3;3.3 Mechanism of Biofilm Formation;76
7.4;3.4 Biofilm Properties: Influence on Biofilm-Based Technologies;77
7.4.1;3.4.1 Extracellular Polymeric Substances: Role in Biofilm Reactor Performance;77
7.4.2;3.4.2 Biofilm Architecture: Role in Biofilm Reactor Performance;78
7.4.3;3.4.3 Quorum Sensing: Role in Bioreactor Cleanup;78
7.4.4;3.4.4 Antimicrobial Resistance: Role in Bioreactor Cleanup;78
7.4.5;3.4.5 Gene Transfer Within Biofilms: Role in Bioremediation;79
7.4.6;3.4.6 External Electron Transfer in Biofilms: Role in MFC Function;79
7.5;3.5 Application of Biofilms;79
7.5.1;3.5.1 Biofilms as Biocontrol Agents;79
7.5.1.1;3.5.1.1 Gram-Positive Bacterial Biofilms as Biocontrol Agents;80
7.5.2;3.5.2 Biofilms as Corrosion Inhibitors;80
7.5.2.1;3.5.2.1 Corrosion Inhibition by Biofilm Through Oxygen Removal;81
7.5.2.2;3.5.2.2 Corrosion Inhibition by Biofilms Secreting Antimicrobials;81
7.5.2.3;3.5.2.3 Corrosion Inhibition with Biofilms Secreting Corrosion Inhibitors;81
7.5.2.4;3.5.2.4 Corrosion Inhibition Through Protective Layers (Biofilm Matrix);81
7.6;3.6 Biofilm-Based Technologies;82
7.6.1;3.6.1 Biofilm Reactors;82
7.6.1.1;3.6.1.1 Biofilm Reactors in Wastewater and Waste Gas Treatment;84
7.6.1.2;3.6.1.2 Biofilm Reactors in Bioremediation Process;84
7.6.1.2.1;Bioremediation of Hydrocarbons;87
7.6.1.2.2;Bioremediation of Heavy Metals;87
7.6.1.3;3.6.1.3 Biofilm Reactors in Productive Biocatalysis;89
7.6.2;3.6.2 Microbial Fuel Cells;91
7.6.2.1;3.6.2.1 Marine MFCs;92
7.6.2.2;3.6.2.2 Wastewater MFCs;92
7.6.2.3;3.6.2.3 Farm Field MFCs;92
7.6.2.4;3.6.2.4 Photosynthetic MFCs;92
7.6.2.5;3.6.2.5 Applications of MFCs;93
7.7;References;94
8;Chapter 4: Future Application of Probiotics: A Boon from Dairy Biology;101
8.1;4.1 Introduction;101
8.2;4.2 Probiotics as Antibiotics or Lactobiotics;102
8.3;4.3 LAB as an Immune Enhancer;103
8.4;4.4 Probiotics and GALT Immunity;104
8.5;4.5 The Demise of the Needle;107
8.5.1;4.5.1 Malaria;107
8.5.2;4.5.2 AIDS;108
8.5.3;4.5.3 Infantile Diarrhea;108
8.5.4;4.5.4 Trichomoniasis;109
8.5.5;4.5.5 Ischemic Heart Diseases;109
8.5.6;4.5.6 Gastritis, Peptic Ulcer, and Gastric Adenocarcinoma;110
8.6;4.6 Conclusion/Future Recommendations;110
8.7;References;111
9;Chapter 5: Microbially Synthesized Nanoparticles: Scope and Applications;115
9.1;5.1 Introduction;116
9.2;5.2 Nanoparticle Synthesis by Bacteria;118
9.2.1;5.2.1 Silver Nanoparticles;118
9.2.2;5.2.2 Gold Nanoparticles;120
9.2.3;5.2.3 Magnetic Nanoparticles;123
9.2.4;5.2.4 Uranium Nanoparticles;124
9.2.5;5.2.5 Cadmium Nanoparticles;125
9.2.6;5.2.6 Selenium Nanoparticles;126
9.2.7;5.2.7 Titanium, Platinum, and Palladium Nanoparticles;127
9.3;5.3 Nanoparticle Biosynthesis by Actinomycetes;128
9.4;5.4 Nanoparticle Biosynthesis by Cyanobacteria;128
9.5;5.5 Nanoparticle Biosynthesis by Yeast;128
9.6;5.6 Nanoparticle Biosynthesis by Fungi;129
9.7;5.7 Scope and Applications of Nanoparticles;131
9.8;5.8 Conclusions;133
9.9;References;133
10;Chapter 6: Bacterial Quorum Sensing and Its Interference: Methods and Significance;141
10.1;6.1 Introduction;141
10.2;6.2 Quorum Sensing Pathways in Bacteria;142
10.2.1;6.2.1 Autoinducer Type 1 Signaling System;142
10.2.2;6.2.2 Autoinducer Type 2 Signaling System;143
10.2.3;6.2.3 Autoinducer Type 3 System;144
10.2.4;6.2.4 Short Peptide Signaling (AIP) System in Gram-Positive Bacteria;144
10.3;6.3 QS Signal Molecules Diversity;144
10.3.1;6.3.1 Gram-Negative Bacteria;145
10.4;6.4 QS-Regulated Bacterial Traits;147
10.5;6.5 Isolation, Purification, and Characterization of AHL Molecules;148
10.6;6.6 Assays for AHL Detection;148
10.6.1;6.6.1 Detection Through Bioassays;148
10.6.2;6.6.2 Chemical Detection;149
10.6.3;6.6.3 Application of Microbial and Chemical Assays;150
10.7;6.7 Interferences in Bacterial Quorum Sensing;153
10.7.1;6.7.1 Inhibition of AHL-Mediated QS;154
10.7.1.1;6.7.1.1 Inhibition of Signal Molecule Biosynthesis;154
10.7.1.2;6.7.1.2 Blocking Signal Transduction;155
10.7.1.2.1;Synthetic Analogues for Quorum Sensing Autoinducers;155
10.7.1.2.2;Modification of the Acyl Side Chain;157
10.7.1.2.3;Modification of the Lactone Ring;158
10.7.1.2.4;Simultaneous Modifications on Both the Lactone Ring and Side Chain;158
10.7.1.3;6.7.1.3 Chemical Inactivation and Biodegradation of Signal Molecules;158
10.7.1.3.1;Chemical Inactivation;159
10.7.1.3.2;Biodegradation;159
10.7.2;6.7.2 Inhibition of Other Quorum-Sensing Systems;160
10.7.3;6.7.3 Quorum-Sensing Inhibitors Expressed by Higher Organisms;160
10.7.3.1;6.7.3.1 Inhibition of QS by Halogenated Furanone Compounds;161
10.7.3.2;6.7.3.2 Inhibition of QS by Plant Products;163
10.7.4;6.7.4 Practical Significance of Bacterial QS Modulation in the Environment/Agriculture;164
10.7.4.1;6.7.4.1 Roles of AHL-Degradation Enzymes in Host;164
10.7.4.2;6.7.4.2 Biotechnological and Pharmaceutical Implications of AHL Degradation Enzymes;164
10.7.4.3;6.7.4.3 Transgenic Plants;165
10.8;6.8 Conclusion;166
10.9;References;167
11;Chapter 7: Horizontal Gene Transfer Between Bacteria Under Natural Conditions;176
11.1;7.1 Introduction;176
11.2;7.2 Horizontal Gene Transfer in Soil, Sediments, and Other Solid Surfaces;177
11.2.1;7.2.1 Environmental Factors Affecting HGT in Nature;178
11.2.2;7.2.2 Tools to Study Horizontal Gene Transfer in the Environment;178
11.3;7.3 Plasmid-Mediated Gene Mobilization in Soil;179
11.3.1;7.3.1 Horizontal Gene Transfer in Metal- and Radionuclide-Contaminated Soils and Sediments;180
11.3.2;7.3.2 Horizontal Gene Transfer in Mixed Waste Sites;182
11.3.3;7.3.3 Horizontal Gene Transfer in Agricultural Soils;183
11.4;7.4 Horizontal Gene Transfer in Aquatic Environments;185
11.4.1;7.4.1 Evidence of Plasmid Transfer in Aquatic Environments;185
11.4.2;7.4.2 Evidence of Plasmid Transfer in Sewage Filter Beds and Activated Sludge Units;186
11.5;7.5 Modeling of Conjugative Plasmid Transfer;186
11.6;7.6 Monitoring Horizontal Gene Transfer and Assessing Transfer Frequencies;188
11.7;7.7 Spread of Biodegradation Traits;189
11.8;7.8 Conclusions;191
11.9;7.9 Future Recommendations;191
11.10;References;192
12;Chapter 8: Molecular Strategies: Detection of Foodborne Bacterial Pathogens;201
12.1;8.1 Introduction;201
12.2;8.2 Molecular Typing Methods for the Detection of Bacterial Pathogens;203
12.2.1;8.2.1 PCR-Based Detection Methods;203
12.2.1.1;8.2.1.1 Multiplex PCR and Real-Time PCR;203
12.2.1.2;8.2.1.2 Random Amplified Polymorphic DNA;205
12.2.1.3;8.2.1.3 Restriction Fragment Length Polymorphism;205
12.2.1.4;8.2.1.4 Amplified Fragment Length Polymorphism;206
12.2.2;8.2.2 Pulsed-Field Gel Electrophoresis;207
12.2.3;8.2.3 Biosensors;208
12.2.4;8.2.4 Microarrays;209
12.2.5;8.2.5 Integrated Systems;210
12.3;8.3 Conclusions and Future Prospectives;211
12.4;References;213
13;Chapter 9: Recent Advances in Bioremediation of Contaminated Soil and Water Using Microbial Surfactants;219
13.1;9.1 Introduction;219
13.2;9.2 Microbial Surfactants/Biosurfactants;220
13.2.1;9.2.1 Sources and Types of Biosurfactants;220
13.2.2;9.2.2 Important Properties of Biosurfactants;223
13.2.3;9.2.3 Surface and Interfacial Tension Reduction;223
13.2.4;9.2.4 Emulsification and De-emulsification Activity;224
13.2.5;9.2.5 Biodegradability;224
13.2.6;9.2.6 Low Toxicity;224
13.3;9.3 Remediation of Contaminated Soil and Water Using Different Physical, Chemical, and Biological Techniques;225
13.3.1;9.3.1 Physical Techniques;225
13.3.2;9.3.2 Chemical Techniques;225
13.3.3;9.3.3 Biological Techniques or Bioremediation;226
13.3.3.1;9.3.3.1 Ex Situ Bioremediation;227
13.4;9.4 Bioremediation of Contaminated Soil and Water Using Biosurfactants;228
13.4.1;9.4.1 Hydrocarbons;228
13.4.2;9.4.2 Polycyclic Aromatic Hydrocarbons;228
13.4.3;9.4.3 Petroleum Hydrocarbons;229
13.4.4;9.4.4 Pesticides and Herbicides;231
13.4.5;9.4.5 Heavy Metals;233
13.5;9.5 Recent Advances in Bioremediation Processes Using Biosurfactants and Future Prospects;235
13.5.1;9.5.1 Use of Immobilized Microorganisms and Contaminants;235
13.5.2;9.5.2 Novel Strains for Producing Biosurfactants;236
13.6;9.6 Applications of Biosurfactants in Agriculture;236
13.7;9.7 Conclusion;236
13.8;References;237
14;Chapter 10: Bioaugmentation-Assisted Phytoextraction Applied to Metal-Contaminated Soils: State of the Art and Future Prospect;241
14.1;10.1 Introduction;241
14.2;10.2 Mechanisms Driving Metal Extraction in Plant–Microorganism Systems;242
14.2.1;10.2.1 Metal Bioaccessibility as a Result of Microbial Mechanisms;243
14.2.2;10.2.2 Mechanisms Controlling Metal Uptake by Plants;244
14.3;10.3 Practical Issues and Recommendations with Phytoextraction-Assisted Bioaugmentation;245
14.3.1;10.3.1 Mutualistic and Symbiotic Relationships with Plants;245
14.3.2;10.3.2 Microbial Consortia;247
14.3.3;10.3.3 Factors Impairing Bioaugmentation Success;247
14.3.4;10.3.4 Genetically Engineered Microorganisms;248
14.4;10.4 Plants;248
14.4.1;10.4.1 Hyperaccumulators vs. High-Biomass Species;248
14.4.2;10.4.2 Mobilization of Metals by Plants: The Role of Siderophores and Phytosiderophores;249
14.4.3;10.4.3 Plant Development;250
14.4.4;10.4.4 Genetically Engineered Plants;250
14.5;10.5 Practical Recommendations for Selection of Plant–Microorganism Couples and Implementation of the Bioaugmentation-Phytoextraction Technique;251
14.5.1;10.5.1 Strategy for Choosing the Most Relevant Plant–Microorganism Couples;251
14.5.2;10.5.2 Preculture Conditions of Microbial Inoculants;255
14.5.3;10.5.3 Selection and Bioaugmentation with Consortia: More Efficient than Pure Culture?;255
14.5.4;10.5.4 Microbial Inoculant Formulations and Management;256
14.5.5;10.5.5 Culture Duration and Planting Density;257
14.5.6;10.5.6 Experiments on Field Scale;258
14.5.7;10.5.7 Economic Aspects of the Technique;258
14.6;10.6 Methods for a Better Understanding of the Mechanisms Involved in Bioaugmentation-Phytoextraction Processes;258
14.6.1;10.6.1 Methods for Inoculant Monitoring, Microbial Biodiversity, and Microbial Activity;258
14.6.2;10.6.2 Physicochemical and Biological Methods to Estimate Metal Bioavailability;260
14.7;10.7 Efficiency of Phytoextraction-Assisted Bioaugmentation;261
14.7.1;10.7.1 Evaluation of Phytoextraction Efficiency Must Incorporate Several Parameters;261
14.7.1.1;10.7.1.1 Plant Parameters;261
14.7.1.2;10.7.1.2 Microbial Parameters;262
14.7.1.3;10.7.1.3 Efficiency of Phytoextraction-Assisted Bioaugmentation;262
14.8;10.8 Environmental Aspects;263
14.9;10.9 Future Prospects;263
14.10;References;266
15;Chapter 11: Biosorption of Uranium for Environmental Applications Using Bacteria Isolated from the Uranium Deposits;279
15.1;11.1 Introduction;279
15.2;11.2 Screening of Microorganisms Isolated from U Deposits for Their U Accumulating Ability;280
15.2.1;11.2.1 Factors Affecting U Accumulation by Bacteria;281
15.2.2;11.2.2 Effect of pH on U Accumulation;281
15.2.3;11.2.3 Effect of U Concentration on U Absorption;283
15.2.4;11.2.4 Time Course of U Accumulation;285
15.2.5;11.2.5 Release of U from Cells by Washing with EDTA;286
15.2.6;11.2.6 Distribution of U in Microbial Cells;286
15.2.7;11.2.7 Selective Accumulation of U Using Arthrobacter, US-10 Cells;288
15.3;11.3 Accumulation of Th and Selective Accumulation of Th and U by Bacteria;288
15.3.1;11.3.1 Recovery of U by Immobilized Bacteria;290
15.3.2;11.3.2 Removal of U from U Refining Wastewater by Bacteria;290
15.3.3;11.3.3 Removal of U from Seawater by Bacteria;292
15.4;11.4 Conclusion;292
15.5;References;293
16;Chapter 12: Bacterial Biosorption: A Technique for Remediation of Heavy Metals;294
16.1;12.1 Introduction;295
16.2;12.2 Bacterial Biosorbents;295
16.2.1;12.2.1 Bacterial Structure;296
16.3;12.3 Mechanisms of Biosorption;300
16.4;12.4 Techniques Used in Metal Biosorption Studies;302
16.5;12.5 Factors Affecting Heavy Metal Biosorption;302
16.5.1;12.5.1 pH;302
16.5.2;12.5.2 Temperature;304
16.5.3;12.5.3 Initial Metal Ion Concentration;304
16.5.4;12.5.4 Initial Concentration of Biosorbent;304
16.5.5;12.5.5 Presence of Competing Ions;305
16.6;12.6 Development of Bacterial Biosorbents;306
16.7;12.7 Biosorption and Equilibrium Studies of Heavy Metals;307
16.7.1;12.7.1 Freundlich Isotherm;307
16.7.2;12.7.2 Langmuir Isotherm;308
16.7.3;12.7.3 Temkin Isotherm;310
16.7.4;12.7.4 Dubinin–Radushkevich Equation;310
16.7.5;12.7.5 Brunauer–Emmer–Teller (BET) Model;311
16.7.6;12.7.6 Redlich–Paterson Isotherm;311
16.7.7;12.7.7 Multicomponent Heavy Metals Biosorption;312
16.8;12.8 Kinetics of Heavy Metal Biosorption;312
16.8.1;12.8.1 Pseudo-First-Order Kinetics;313
16.8.2;12.8.2 Pseudo-Second-Order Kinetics;314
16.8.3;12.8.3 The Weber and Morris Sorption Kinetic Model;315
16.8.4;12.8.4 First-Order Reversible Reaction Model;315
16.9;12.9 Immobilization of Bacteria;316
16.10;12.10 Desorption of Heavy Metals;317
16.11;12.11 Biosorption and Its Column Performance;318
16.11.1;12.11.1 Column Regeneration;320
16.11.2;12.11.2 Sorption Column Model;320
16.12;12.12 Conclusion;321
16.13;12.13 Future Prospects;322
16.14;References;322
17;Chapter 13:Metal Tolerance and Biosorption Potentialof Soil Fungi: Applications for a Greenand Clean Water Treatment Technology;331
17.1;13.1 Introduction;331
17.2;13.2 Soil Fungi and Their Diversity;333
17.3;13.3 Heavy Metal Pollution in Water and Soil;335
17.4;13.4 Metal–Fungi Interactions and Development of Metal Resistance/Tolerance;337
17.5;13.5 Mechanisms of Metal Resistance and Tolerance;338
17.5.1;13.5.1 Metal Solubilization;339
17.5.2;13.5.2 Metal Immobilization;341
17.5.3;13.5.3 Metal Transformations;341
17.6;13.6 Biosorption;341
17.6.1;13.6.1 Biosorbents;342
17.6.2;13.6.2 Metal Binding to Cell Walls;343
17.6.2.1;13.6.2.1 Skeletal Elements;343
17.6.2.2;13.6.2.2 Matrix Components;343
17.6.2.3;13.6.2.3 Miscellaneous Components;343
17.6.3;13.6.3 Transport of Toxic Metal Cations;344
17.6.4;13.6.4 Metal Uptake by Living Cells;344
17.6.5;13.6.5 Intracellular Fate of Toxic Metals;344
17.6.6;13.6.6 Metal Transformations Within Fungi;345
17.6.7;13.6.7 Metal Sorption by Dead Cells;346
17.6.8;13.6.8 Mechanism of Biosorption;346
17.6.8.1;13.6.8.1 Extracellular Accumulation/Precipitation;346
17.6.8.2;13.6.8.2 Cell Surface Sorption/Precipitation;347
17.6.8.3;13.6.8.3 Intracellular Accumulation/Precipitation;348
17.6.9;13.6.9 Factors Affecting Heavy Metal Biosorption;349
17.6.9.1;13.6.9.1 Biomass Pretreatment Effect on Biosorption;349
17.7;13.7 Biosorption Potential of Fungal Biomass;350
17.8;13.8 Conclusions;357
17.9;References;358
18;Chapter 14:Rhizosphere and Root Colonization by BacterialInoculants and Their Monitoring Methods:A Critical Area in PGPR Research;372
18.1;14.1 Introduction;373
18.2;14.2 The Rhizosphere and Rhizospheric Effect;374
18.2.1;14.2.1 Rhizosphere Colonization;375
18.2.2;14.2.2 Competition for Root Niches and Bacterial Determinants Directly Involves Root Colonization;376
18.2.3;14.2.3 Biofilms in the Rhizosphere;377
18.2.4;14.2.4 Factors Affecting Root Colonization and Efficacy of Rhizobacteria;379
18.3;14.3 Monitoring of Microbial Inoculants (Biocontrol Agents/PGPR);380
18.3.1;14.3.1 Microbiological Monitoring Methods;380
18.3.2;14.3.2 Direct Monitoring Methods;382
18.3.3;14.3.3 Molecular Monitoring Methods;383
18.3.4;14.3.4 Use of Reporter Genes;385
18.3.5;14.3.5 Green Fluorescent Protein;386
18.3.6;14.3.6 Lac Z and Lux Gene-Based Reporting Methods;387
18.3.7;14.3.7 Luciferase Gene;389
18.4;14.4 Conclusions and Future Prospects;389
18.5;References;391
19;Chapter 15: Pesticide Interactions with Soil Microflora: Importance in Bioremediation;401
19.1;15.1 Introduction;401
19.2;15.2 Toxicity of Pesticides to Soil Microorganisms and Plants;402
19.2.1;15.2.1 Insecticidal Impact on Rhizobacteria and Crops;402
19.3;15.3 Bioremediation;406
19.3.1;15.3.1 Bioremediation of Insecticides;408
19.3.1.1;15.3.1.1 Lindane and Its Isomers;409
19.3.1.1.1;Anaerobic Biodegradation Pathway;409
19.3.1.1.2;Aerobic Biodegradation Pathway;410
19.3.1.2;15.3.1.2 Biodegradation of Chlorpyrifos;412
19.3.1.3;15.3.1.3 Monocrotophos;415
19.4;15.4 Conclusion;417
19.5;References;418
20;Chapter 16: Baculovirus Pesticides: Present State and Future Perspectives;422
20.1;16.1 Introduction;423
20.2;16.2 State of Taxonomy and Biology of Baculoviruses;423
20.2.1;16.2.1 Taxonomy;423
20.2.2;16.2.2 Viral Life Cycle;424
20.2.3;16.2.3 Molecular Biology of Baculoviruses;426
20.3;16.3 Baculovirus Production Technology;429
20.3.1;16.3.1 In Vivo Production;429
20.3.2;16.3.2 In Vitro Production;429
20.4;16.4 Use of Baculoviruses for Pest Control;431
20.4.1;16.4.1 Use of the Alphabaculovirus of Anticarsia gemmatalis (AgMNPV) in Brazil and Latin America: A Case Study;434
20.4.1.1;16.4.1.1 Historical Perspective;434
20.4.1.2;16.4.1.2 AgMNPV Field Production;436
20.4.1.3;16.4.1.3 AgMNPV Commercial Laboratory Production: A Breakthrough;437
20.4.1.4;16.4.1.4 Why Did the AgMNPV Program Experience a Setback in Brazil?;438
20.5;16.5 Factors Limiting Baculovirus Use;438
20.6;16.6 Genetically Modified Baculoviruses to Control Insects;439
20.7;16.7 Final Considerations and Further Prospects on Use of Baculoviruses as Biopesticides;444
20.8;References;445
21;Chapter 17: Fungal Bioinoculants for Plant Disease Management;453
21.1;17.1 Introduction;453
21.1.1;17.1.1 Management of Plant Diseases;455
21.1.1.1;17.1.1.1 Biological Control;456
21.1.1.1.1;Bioinoculant Fungi and Mechanisms of Action;456
21.1.1.1.1.1;Fungistatic;457
21.1.1.1.1.2;Competition for Nutrients;458
21.1.1.1.1.3;Antibiosis;459
21.1.1.1.1.4;Mycoparasitism;460
21.1.1.1.1.5;Stimulation of Host Defense Response;461
21.1.1.1.2;Fungal Diseases and Their Management by Bioinoculants;462
21.1.1.1.2.1;In Vitro;463
21.1.1.1.2.2;Pot Culture;464
21.1.1.1.2.3;Field Conditions;465
21.1.1.1.2.4;Bioinoculants in IPM;467
21.1.1.1.3;Bacterial Diseases and Their Management;467
21.1.1.1.4;Nematode Diseases and Their Management;469
21.1.1.1.4.1;In Vitro Studies;471
21.1.1.1.4.2;Pot Conditions;473
21.1.1.1.4.3;Field Conditions;474
21.1.2;17.1.2 Production Technology of Bioinoculants;475
21.1.2.1;17.1.2.1 Pellet Formulations;475
21.1.2.2;17.1.2.2 Powder Formulations;476
21.1.2.3;17.1.2.3 Liquid Formulations;480
21.2;17.2 Conclusion;482
21.2.1;17.2.1 Future Recommendations;483
21.3;References;483
22;Chapter 18: Mycorrhizal Inoculants: Progress in Inoculant Production Technology;495
22.1;18.1 Introduction;496
22.2;18.2 Inocula Production of AM Fungi;496
22.2.1;18.2.1 Soil-Based Systems;497
22.2.2;18.2.2 Soil-Less Techniques;498
22.2.2.1;18.2.2.1 Aeroponic Culture;498
22.2.2.2;18.2.2.2 Monoxenic Culture;498
22.2.2.3;18.2.2.3 Nutrient Film Technique;499
22.2.2.4;18.2.2.4 Polymer-Based Inoculum;500
22.2.2.5;18.2.2.5 Integrated Method;500
22.3;18.3 Storage of AM Inocula;501
22.4;18.4 Inocula Production of Ectomycorrhizal Fungi;502
22.4.1;18.4.1 Formulation of ECM;505
22.4.2;18.4.2 Storage of ECM;506
22.5;18.5 Discussion;507
22.6;References;508
23;Index;513



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.