Akasaka / Matsuki High Pressure Bioscience
1. Auflage 2015
ISBN: 978-94-017-9918-8
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Basic Concepts, Applications and Frontiers
E-Book, Englisch, Band 72, 722 Seiten, eBook
Reihe: Subcellular Biochemistry
ISBN: 978-94-017-9918-8
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Part I Why and How Proteins Denature under Pressure?.- 1 Early Days of Pressure Denaturation Studies of Proteins.- 2 Protein Denaturation on p - T Axes - Thermodynamics and Analysis.- 3 Driving Forces in Pressure-induced Protein Transitions.- 4 Why and How Does Pressure Unfold Proteins?.- Part II Volume, Compressibility, Fluctuation and Interaction in Proteins.- 5 Volume and Compressibility of Proteins.- 6 Pressure-Dependent Conformation and Fluctuation in Folded Protein Molecules.- 7 Water Turns the "Non-Biological" Fluctuation of Protein into "Biological" One.- 8 Pressure Effects on the Intermolecular Interaction Potential of Condensed Protein Solutions.- Part III Pressure and Functional Sub-States in Proteins.- 9 High Pressure NMR Methods for Characterizing Functional Sub-States of Proteins.- 10 High-Pressure NMR Spectroscopy Reveals Functional Sub-States of Ubiquitin and Ubiquitin-Like Proteins.- 11 Functional Sub-States of Proteins by Macromolecular Crystallography.- 12 Cavities and Excited States in Proteins.- Part IV Pressure and Protein Folding and Assembly.- 13 Exploring the Protein Folding Pathway with High-Pressure NMR: Steady-State and Kinetic Studies.- 14 Basic Equations in Statics and Kinetics of Protein Polymerization and the Mechanism of the Formation and Dissociation of Amyloid Fibrils Revealed by Pressure Perturbation.- 15 Pressure-Inactivated Virus: a Promising Alternative for Vaccine Production.- Part V Pressure Effects on Biological Membranes.- 16 How Do Membranes Respond to Pressure?.- 17 Pressure Effects on Artificial and Cellular Membranes.- 18 Effects of High Hydrostatic Pressure on Microbial Cell Membranes: Structural and Functional Perspectives.- 19 Homeoviscous Adaptation of Membranes in Archaea.- Part VI Pressure adaptation and tolerance of proteins and living organisms .- 20 Pressure-Dependent Gene Activation in Yeast Cells.- 21Environmental Adaptation of Dihydrofolate Reductase from Deep-Sea Bacteria.- 22 Moss Spores Can Tolerate Ultra-High Pressure.- Part VII High pressure food processing and pasteurization .- 23 Pressure-Based Strategy for the Inactivation of Spores.- 24 Use of Pressure Activation in Food Quality Improvement.- 25 Use of Pressure for Improving Storage Quality of Fresh-Cut Produce.- 26 Application of High-Pressure Treatment to Enhancement of Functional Components in Agricultural Products and Development of Sterilized Foods.- Part VIII Pressure Effects on Motility, Physiology and Health.- 27 High-Pressure Microscopy for Studying Molecular Motor.- 28 Ion Channels Activated by Mechanical Forces in Bacterial and Eukaryotic Cells.- 29 Gravitational Effects on Human Physiology.- Part IX Methodology .- 30 High Pressure Small-Angle X-Ray Scattering.- 31 High Pressure Macromolecular Crystallography.- 32 High-Pressure Fluorescence Spectroscopy up to 700 MPa.- 33 High Pressure NMR Spectroscopy.