Albin / Poggi-Corradini | Mathematics of Networks | Buch | 978-0-367-45707-5 | sack.de

Buch, Englisch, 416 Seiten, Format (B × H): 156 mm x 234 mm

Albin / Poggi-Corradini

Mathematics of Networks

Modulus Theory and Convex Optimization
1. Auflage 2025
ISBN: 978-0-367-45707-5
Verlag: Taylor & Francis Ltd

Modulus Theory and Convex Optimization

Buch, Englisch, 416 Seiten, Format (B × H): 156 mm x 234 mm

ISBN: 978-0-367-45707-5
Verlag: Taylor & Francis Ltd


Mathematics of Networks: Modulus Theory and Convex Optimization explores the question: “What can be learned by adapting the theory of p-modulus (and related continuum analysis concepts) to discrete graphs?” This book navigates the rich landscape of p-modulus on graphs, demonstrating how this theory elegantly connects concepts from graph theory, probability, and convex optimization.

This book is ideal for anyone seeking a deeper understanding of the theoretical foundations of network analysis and applied graph theory. It serves as an excellent primary text or reference for graduate and advanced undergraduate courses across multiple disciplines, including mathematics, data science, and engineering, particularly those focusing on network analysis, applied graph theory, optimization, and related areas.

Features:

- Accessible to students with a solid foundation in multivariable calculus and linear algebra.

- Broad interdisciplinary appeal, relevant to mathematics, data science, and engineering curricula.

- Numerous engaging exercises.

Albin / Poggi-Corradini Mathematics of Networks jetzt bestellen!

Zielgruppe


Postgraduate

Weitere Infos & Material


Section I The Mathematics of Networks 1 Introduction to Graph Theory 2 Electrical Networks 3 The Laplacian 4 The Language of Probability 5 Basic theory of Markov chains 6 Connections 7 Mixing times Section II Optimization Problems on Graphs 8 Introduction to optimization 9 Continuous optimization Section III The Basic Theory of Modulus 10 Modulus on graphs 11 Dependence on the parameters 12 Duality for modulus 13 Probabilistic interpretation and blocking duality Section IV Families of Paths 14 Connecting Families 15 Modulus on Planar Maps 16 Modulus metrics Section V The Family of Spanning Trees 17 Loops and Trees 18 Spanning Tree Modulus Section VI Algorithms for Modulus 19 Algorithms for modulus Bibliography Index


Nathan Albin received a BA in Mathematics from the University of Hawaii and Hilo in 2001. Following a short stint as a software engineer, he attended graduate school at the University of Utah and received a PhD in Mathematics in 2006. He was then awarded an NSF Mathematical Sciences Postdoctoral Research Fellowship, hence spent one year researching at the University of Duisburg-Essen, before moving to Pasadena, CA to complete his postdoctoral research at Caltech. He was hired as an Assistant Professor of Mathematics in 2011 and was promoted to Associate Professor in 2016. His primary research interests include Applied Mathematics, Network Theory, Optimization Theory, and Numerical Analysis.

Pietro Poggi-Corradini grew up in Milan, Italy, and in 1992 received a Bachelor in Mathematics from the University of Milan. He then pursued his studies at the University of Washington in Seattle (USA) and graduated in 1996 with a PhD Thesis in Complex Dynamics and Operator Theory under Professor Don Marshall. Thereafter he became Whyburn Instructor at the University of Virginia and in 1998 joined the faculty at Kansas State University. He has been Full Professor at Kansas State University since 2005. His interests currently span Network Theory, Complex Analysis, Probability, and Applied Mathematics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.