Buch, Englisch, 304 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 487 g
NAART II, Coimbra, Portugal, July 18-22, 2022
Buch, Englisch, 304 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 487 g
Reihe: Springer Proceedings in Mathematics & Statistics
ISBN: 978-3-031-32709-4
Verlag: Springer International Publishing
The papers in this volume are organized into four parts: Lie algebras, superalgebras, and groups; Leibniz algebras; associative and Jordan algebras; and other non-associative structures. They cover a variety of topics, including classification problems, special maps (automorphisms, derivations, etc.), constructions that relate different structures, and representation theory.
One of the unique features of NAART is that it is open to all topics related to non-associative algebras, including octonion algebras, composite algebras, Banach algebras, connections with geometry, applications in coding theory, combinatorial problems, and more. This diversity allows researchers from a range of fields to find the conference subjects interesting and discover connections with their own areas, even if they are not traditionally considered non-associative algebraists.
Since its inception in 2011, NAART has been committed to fostering cross-disciplinary connections in the study of non-associative structures.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Informationstheorie, Kodierungstheorie
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Kryptologie, Informationssicherheit
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Informationstheorie, Kodierungstheorie
Weitere Infos & Material
Part 1: Lie Algebras, Superalgebras and Groups.- 1.Local derivations of classical simple Lie algebras (S. Ayupov, K. Kudaybergenov).- 2. Examples and patterns on quadratic Lie algebras (P. Benito and J. Roldán-López).- 3. Reductive homogeneous spaces of the compact Lie group G2 (C. Draper and F. J. Palomo).- 4. On certain algebraic structures associated with Lie (super)algebras(N. Kamiya).- 5. Schreier’s type formulae and two scales for growth of Lie algebras and groups (V. Petrogradsky).- Part 2: Leibniz Algebras.- 6. Universal central extensions of compatible Leibniz algebras (J.M.C Mirás, M. Ladra).- 7. On some properties of generalized Lie-derivations of Leibniz algebras (J.M.C Mirás, N.P. Rego).- 8. Biderivations of low-dimensional Leibniz algebras (M. Mancini).- 9. Poisson structure on the invariants of pairs of matrices (R. Turdibaev).- Part 3. Associative and Jordan Algebras and Related Structures.- 10. Automorphisms, derivations and gradings of the split quartic Cayley algebra (V. Blasco and A. Daza-García).- 11. On a Theorem of Brauer-Cartan-Hua type in superalgebras (J. Laliena).- 12. Growth functions of Jordan algebras (C. Martínez and E. Zelmanov).- 13. The image of polynomials in one variable on the algebra of 3 × 3 upper triangular matrices (T.C. de Mello and D.Rodrigues).- Part 4: Other Nonassociative Structures.- 14. Simultaneous orthogonalization of inner products over arbitrary ?elds (Y. Cabrera, C. Gil, D. Martín and C. Martín).- 15. Invariant theory of free bicommutative algebras (V. Drensky).- 16. An approach to the classi?cation of ?nite semi?elds by quantum computing (J.M.H. Cáceres, I.F. Rúa).- 17.On ideals and derived and central descending series of n-ary Hom-algebras (A. Kitouni, S. Mboya, E. Ongong’a, S. Silvestrov).- 18. Okubo algebras with isotropic norm (A. Elduque).