Altenbach / Öchsner | State of the Art and Future Trends in Material Modeling | E-Book | www.sack.de
E-Book

E-Book, Englisch, 530 Seiten

Reihe: Chemistry and Materials Science

Altenbach / Öchsner State of the Art and Future Trends in Material Modeling


1. Auflage 2019
ISBN: 978-3-030-30355-6
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 530 Seiten

Reihe: Chemistry and Materials Science

ISBN: 978-3-030-30355-6
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This special anniversary book celebrates the success of this Springer book series highlighting materials modeling as the key to developing new engineering products and applications. In this 100th volume of 'Advanced Structured Materials', international experts showcase the current state of the art and future trends in materials modeling, which is essential in order to fulfill the demanding requirements of next-generation engineering tasks.

Prof. Dr.-Ing. habil. Dr. h.c.mult Holm Altenbach is a member of the International Association of Applied Mathematics and Mechanics, and the International Research Center on Mathematics and Mechanics of Complex Systems (M&MoCS), Italy. He has held positions at the Otto von Guericke University Magdeburg and at the Martin Luther University Halle-Wittenberg, both in Germany. He graduated from Leningrad Polytechnic Institute in 1985 (diploma in Dynamics and Strength of Machines). He defended his Ph.D. in 1983 and was awarded his Doctor of Technical Sciences in 1987, both at the same institute. He is currently a Full Professor of Engineering Mechanics at the Otto von Guericke University Magdeburg, Faculty of Mechanical Engineering, Institute of Mechanics (since 2011), and has been acting as Director of the Institute of Mechanics since 2015. His areas of scientific interest are general theory of elastic and inelastic plates and shells, creep and damage mechanics, strength theories, and nano- and micromechanics. He is author/co-author/editor of 60 books (textbooks/monographs/proceedings), approximately 380 scientific papers (among them 250 peer-reviewed) and 500 scientific lectures. He is Managing Editor (2004 to 2014) and Editor-in-Chief (2005 - to date) of the Journal of Applied Mathematics and Mechanics (ZAMM) - the oldest journal in Mechanics in Germany (founded by Richard von Mises in 1921). He has been Advisory Editor of the journal 'Continuum Mechanics and Thermodynamics' since 2011, Associate Editor of the journal 'Mechanics of Composites' (Riga) since 2014, Doctor of Technical Sciences and Co-Editor of the Springer Series 'Advanced Structured Materials' since 2010. He was awarded the 1992 Krupp Award (Alexander von Humboldt Foundation); 2000 Best Paper of the Year-Journal of Strain Analysis for Engineering Design; 2003 Gold Medal of the Faculty of Mechanical Engineering, Politechnika Lubelska, Lublin, Poland; 2004 Semko Medal of the National Technical University Kharkov, Ukraine; 2007 Doctor Honoris Causa, National Technical University Kharkov, Ukraine; 2011 Fellow of the Japanese Society for the Promotion of Science; 2014 Doctor Honoris Causa, University Constanta, Romania; 2016 Doctor Honoris Causa, Vekua Institute, Tbilisi, Georgia; 2018 Alexander von Humboldt Award (Poland). Andreas Öchsner is a Full Professor of Lightweight Design and Structural Simulation at Esslingen University of Applied Sciences, Germany. Having obtained a Dipl.-Ing. degree in Aeronautical Engineering at the University of Stuttgart (1997), Germany, he served as a research and teaching assistant at the University of Erlangen-Nuremberg from 1997 to 2003, while working to complete his Doctor of Engineering Sciences (Dr.-Ing.) degree. From 2003 to 2006, he was an Assistant Professor at the Department of Mechanical Engineering and Head of the Cellular Metals Group affiliated with the University of Aveiro, Portugal. He spent seven years (2007-2013) as a Full Professor at the Department of Applied Mechanics, Technical University of Malaysia, where he was also Head of the Advanced Materials and Structure Lab. From 2014 to 2017, he was a Full Professor at the School of Engineering, Griffith University, Australia, and Leader of the Mechanical Engineering Program (Head of Discipline and Program Director).

Altenbach / Öchsner State of the Art and Future Trends in Material Modeling jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;List of Contributors;18
4;1On Viscoelasticity in the Theory of Geometrically Linear Plates;26
4.1;1.1 Introduction;26
4.1.1;1.1.1 Motivation;26
4.1.2;1.1.2 Organisation of the Paper;27
4.1.3;1.1.3 Preliminaries and Notation;28
4.2;1.2 Linear Elastic Background;30
4.3;1.3 Constitutive Models for Linear Viscoelasticity;34
4.3.1;1.3.1 Basic Elements of Rheological Circuits;34
4.3.2;1.3.2 Series Arrangement of Elements;36
4.3.3;1.3.3 Parallel Arrangement of Elements;37
4.4;1.4 Application to Viscoelastic Plates;37
4.4.1;1.4.1 Maxwell Model;38
4.4.2;1.4.2 Kelvin Model;40
4.4.3;1.4.3 Visualization of Model Behavior;40
4.4.4;1.4.4 Ansatz for Viscous Parameters;41
4.5;1.5 Determination of Material Parameters;43
4.6;1.6 Conclusion;44
4.7;References;46
5;2Teaching Mechanics;48
5.1;2.1 Background;48
5.2;2.2 The Development of Mechanics Teaching;50
5.3;2.3 A New Conceptual Approach;55
5.4;2.4 Teaching Introductory Mechanics;57
5.4.1;2.4.1 Conceptual Misunderstandings in Newtonian Mechanics;58
5.4.2;2.4.2 Kinematics & The Law of Falling Bodies;58
5.4.3;2.4.3 Basic Forces;59
5.4.4;2.4.4 Connected Bodies, Free Body Diagrams and Problem Solving;62
5.4.5;2.4.5 Using Socratic Dialogue with Technology;63
5.5;2.5 More Advanced Topics: Continuum Mechanics;65
5.5.1;2.5.1 Teaching Introductory Statics;65
5.5.2;2.5.2 Introducing Continuum Mechanics;67
5.6;2.6 Conclusions;69
5.7;References;70
6;3 Modeling of Damage of Ductile Materials;74
6.1;3.1 Introduction;75
6.2;3.2 Continuum Damage Model;77
6.2.1;3.2.1 Basic Ideas;77
6.2.2;3.2.2 Thermodynamically Consistent Model;79
6.2.3;3.2.3 Damage Mode Parameters Based on Numerical Simulations on the Micro-scale;83
6.3;3.3 Experiments and Corresponding Numerical Simulations;85
6.3.1;3.3.1 Experimental Equipment and Specimens;85
6.3.2;3.3.2 Numerical Aspects;87
6.3.3;3.3.3 Results of Biaxial Experiments and Corresponding Numerical Simulations;88
6.4;3.4 Conclusions;100
6.5;References;100
7;4Creep in Heat-resistant Steels at Elevated Temperatures;104
7.1;4.1 Introduction;104
7.2;4.2 Basics About Creep in Heat-resistant Steels;106
7.2.1;4.2.1 Microstructure of Heat-resistant Steels;106
7.2.2;4.2.2 Definition of Creep and Influence of Stress and Temperature;107
7.2.3;4.2.3 Classical Creep Curve. Primary, Secondary, and Tertiary Creep;109
7.3;4.3 Constitutive Modeling of Creep;111
7.3.1;4.3.1 Early Approaches;112
7.3.2;4.3.2 Nonunified Models;114
7.3.3;4.3.3 Unified Models;116
7.4;4.4 Constitutive Modeling of Creep Damage;121
7.4.1;4.4.1 Cavity Growth Mechanism Models;122
7.4.2;4.4.2 Continuum Damage Mechanics Models;123
7.5;4.5 Conclusion and Outlook;125
7.6;References;127
8;5 Surface Elasticity Models: Comparison Through the Condition of the Anti-plane Surface Wave Propagation;138
8.1;5.1 Introduction;138
8.2;5.2 Anti-plane Motions of an Elastic Half-Space;139
8.3;5.3 Constitutive Relations Within the Surface Elasticity;141
8.3.1;5.3.1 Simplified Linear Gurtin-Murdoch Model;141
8.3.2;5.3.2 Linear Stress-gradient Surface Elasticity;141
8.3.3;5.3.3 Linear Strain-gradient Surface Elasticity;143
8.4;5.4 Dispersion Relations;143
8.5;5.5 Conclusions;146
8.6;References;147
9;6Anisotropic Material Behavior;150
9.1;6.1 Elastic Anisotropy;150
9.1.1;6.1.1 Triclinic Symmetry;151
9.1.2;6.1.2 Monoclinic Symmetry;154
9.1.3;6.1.3 Trigonal/Rhombohedral Symmetry;155
9.1.4;6.1.4 Orthorhombic Symmetry;155
9.1.5;6.1.5 Tetragonal Transverse Isotropy;156
9.1.6;6.1.6 Hexagonal Transverse Isotropy;157
9.1.7;6.1.7 Cubic Symmetry;158
9.2;6.2 Plastic Anisotropy;158
9.2.1;6.2.1 Goldenblat–Kopnov’s Criterion;159
9.2.2;6.2.2 Von Mises’ Anisotropic Criterion;160
9.2.3;6.2.3 Von Mises’ Orthotropic Criterion and Hill’s Deviatoric Criterion;165
9.2.4;6.2.4 Barlat–Khan’s Implicit Formulations;169
9.2.5;6.2.5 Brief Survey of Anisotropic Yield Criteria;172
9.3;References;174
10;7Coupled Problems in Thermodynamics;176
10.1;7.1 Introduction;176
10.2;7.2 Historical Remarks and the State of the Art;178
10.2.1;7.2.1 Preliminary Remarks;178
10.2.2;7.2.2 Statistical Thermodynamics and Continuum Mechanics;178
10.2.3;7.2.3 Non-equilibrium Thermodynamics and Continuum Mechanics;181
10.2.4;7.2.4 A Brief Overview of Current Research;183
10.3;7.3 Mechanical Models for Studying Coupled Problems in Thermodynamics;185
10.3.1;7.3.1 Preliminary Remarks;185
10.3.2;7.3.2 The Cosserat Continuum of Special Type;185
10.3.3;7.3.3 Mechanical Analogies of Physical Quantities;188
10.3.4;7.3.4 Simulating Thermodynamic and Electromagnetic Processes in Matter;188
10.3.5;7.3.5 Analysis of the Wave Behavior at the Interface;190
10.4;7.4 Whether Modern Thermodynamics Needs Mechanical Models;194
10.5;References;194
11;8Estimation of Energy of Fracture Initiation in Brittle Materials with Cracks;198
11.1;8.1 Introduction;198
11.2;8.2 Discrete Model of a Brittle Material;200
11.3;8.3 An Infinite Rectangular Crack;201
11.4;8.4 A Penny-shaped Crack;203
11.5;8.5 Multiple Randomly Oriented Penny-shaped Cracks (Non-interaction Approximation);204
11.6;8.6 Conclusions;204
11.7;References;205
12;9Effective Elastic Properties Using Maxwell’s Approach for Transversely Isotropic Composites;208
12.1;9.1 Introduction;209
12.2;9.2 Statement of Fundamental Equations;211
12.3;9.3 Geometry of Inclusions;213
12.4;9.4 Maxwell’s Homogenization Approach;215
12.5;9.5 Analysis of Numerical Results;217
12.5.1;9.5.1 Density Distribution Functions;218
12.5.2;9.5.2 Study of Composites Constituted by Isotropic Matrix and Isotropic Inhomogeneities;219
12.5.3;9.5.3 Study of Composites Constituted by Isotropic Matrix and Transversely Isotropic Inhomogeneities;223
12.5.4;9.5.5 Two-phase Nano-composites;227
12.6;9.6 Conclusions;227
12.7;Appendix;228
12.8;References;233
13;10Advanced Numerical Models for Predicting the Load and Environmentally Dependent Behaviour of Adhesives and Adhesively Bonded Joints;236
13.1;10.1 Introduction;237
13.2;10.2 Modelling Adhesives and Adhesive Joints Using Cohesive Zone Models and Extended Finite Element Method;238
13.3;10.3 Modelling of Adhesives and Adhesive Joints Under Varying Loading Rates and Impact Conditions;243
13.4;10.4 Modelling the Behaviour of Adhesives and Adhesive Joints Under Hygrothermal Ageing Conditions;247
13.5;10.5 Modelling of Adhesives and Adhesive Joints Under Cyclic Loads;255
13.6;References;264
14;11A Short Review of Electromagnetic Force Models for Matter - Theory and Experimental Evidence;270
14.1;11.1 Compilation of Relevant Force Models;270
14.2;11.2 Intermezzo;272
14.3;11.3 Case I: Magnetostriction of a Spherical Permanent Magnet;273
14.4;11.4 Case II: Deformation of a Spherical Droplet due to Electric Polarization;275
14.5;11.5 Case III: Elastic Deformation of Spherical Electrets due to Electric Polarization and Surface Charges;276
14.6;11.6 Case IV: Force and Torque Interaction Between Spherical Magnets;279
14.7;11.7 Conclusions and Outlook;282
14.8;References;282
15;12Extreme Yield Figures for Universal Strength Criteria;284
15.1;12.1 Introduction;285
15.2;12.2 Requirements for Yield Criteria;286
15.3;12.3 Formulating Yield Criteria;287
15.4;12.4 Comparing Different Yield Criteria;289
15.4.1;12.4.1 Geometry of Limit Surfaces in the ?-plane;290
15.4.2;12.4.2 Material Properties and Basic Experiments;293
15.5;12.5 Extreme Yield Figures;294
15.6;12.6 Generalized Strength Criteria;296
15.6.1;12.6.1 Modified Yu Strength Criterion;298
15.6.2;12.6.2 Podgórski Criterion;298
15.6.3;12.6.3 Modified Altenbach-Zolochevsky Criterion;300
15.6.4;12.6.4 Universal Yield Criterion of Trigonal Symmetry;301
15.6.5;12.6.5 Universal Deviatoric Function;308
15.7;12.7 Application to Concrete;313
15.7.1;12.7.1 Objective Functions;313
15.7.2;12.7.2 Approximation and Restrictions;314
15.7.3;12.7.3 Comparison of Approximations;317
15.8;12.8 Summary;327
15.9;Appendices;328
15.10;A.1 Invariants of the Stress Tensor;328
15.11;A.2 Geometric Properties in the ?-plane;330
15.12;A.3 Identification of Limit Surface for Pressure-sensitive Materials;331
15.13;A.4 Derivation of the Modified Yu Strength Criterion;333
15.14;A.5 Properties of the Podgórski Criterion;335
15.15;A.6 Properties of the Modified Altenbach-Zolochevsky Criterion;336
15.16;A.7 Measured Concrete Data;337
15.17;A.8 Estimates and Parameter Studies;337
15.18;References;338
16;13On the Derivation and Application of a Finite Strain Thermo-viscoelastic Material Model for Rubber Components;350
16.1;13.1 Introduction;350
16.2;13.2 Elastomer Structure and Behaviour;352
16.3;13.3 Continuum Mechanical Material Modelling;353
16.3.1;13.3.1 Balance Equations;354
16.3.2;13.3.2 Quasi-incompressible Modified Thermoviscoelasticity;356
16.3.3;13.3.3 Heat Conduction Equation;359
16.4;13.4 Finite Element Implementation;360
16.5;13.5 Material Model;364
16.6;13.6 Model Validation;367
16.6.1;13.6.1 Parameter Identification;368
16.6.2;13.6.2 Computational Model;369
16.6.3;13.6.3 Analysis;369
16.7;13.7 Summary and Conclusion;371
16.8;References;372
17;14Additive Manufacturing: A Review of the Influence of Building Orientation and Post Heat Treatment on the Mechanical Properties of Aluminium Alloys;374
17.1;14.1 Nomenclatur;375
17.2;14.2 Introduction;375
17.3;14.3 Additive Manufacturing - Selective Laser Melting;376
17.4;14.4 Mechanical Properties;377
17.4.1;14.4.1 Hardness;379
17.4.2;14.4.2 Tensile Strength;383
17.5;14.5 Conclusions;387
17.6;References;388
18;15Efficient Numerics for the Analysis of Fibre-reinforced Composites Subjected to Large Viscoplastic Strains;392
18.1;15.1 Introduction;392
18.2;15.2 Material Model of the Fibre-reinforced Composite;393
18.2.1;15.2.1 Isotropic Viscoplasticity for the Matrix;394
18.2.2;15.2.2 Anisotropic Viscoplasticity for the Fibre;395
18.3;15.3 Efficient Numerics;397
18.3.1;15.3.1 Isotropic Viscoplasticity of the Matrix;397
18.3.2;15.3.2 Anisotropic Viscoplasticity of the Fibre;399
18.4;15.4 Tests and Applications;401
18.4.1;15.4.1 Single Fibre;401
18.4.2;15.4.2 Inflation of a Viscoplastic Composite Tube;402
18.5;15.5 Discussion and Conclusion;404
18.6;References;404
19;16An Artificial Intelligence-based Hybrid Method for Multi-layered Armour Systems;406
19.1;16.1 Introduction;407
19.1.1;16.1.1 The Hybrid Methodology;407
19.2;16.2 Plugging of Ductile Plates: Analytical Modelling;408
19.3;16.3 Plugging of Ductile Plates: Neural Network Model;411
19.3.1;16.3.1 Training Process;412
19.3.2;16.3.2 Problem Setting;414
19.3.3;16.3.3 Artificial Intelligence Setup;415
19.4;16.4 Results and Discussion;417
19.4.1;16.4.1 Finite Element Modelling;420
19.5;16.5 Conclusions and Final Remarks;422
19.6;References;423
20;17A Review on Numerical Analyses of Martensitic Phase Transition in Mono and Polycrystal Transformation-induced Plasticity Steel by Crystal Plasticity Finite Element Method with Length Scales;426
20.1;17.1 Introduction;427
20.2;17.2 Literature Survey of Problems on Length Scales Regarding with Martensitic Phase Transformation;429
20.2.1;17.2.1 Effects of Length Scales in the Parent Phase;429
20.2.2;17.2.2 Effects of Length Scales in the Product Phase;431
20.3;17.3 Computational Aspects;432
20.3.1;17.3.1 A Model of Single Crystal Transformation-induced Plasticity Steel Based on Continuum Crystal Plasticity Suggested by Iwamoto and Tsuta (2004);433
20.3.2;17.3.2 Computational Models and Conditions for Single and Polycrystal Transformation-induced Plasticity Steel;434
20.4;17.4 Computational Results and Discussions;436
20.4.1;17.4.1 Effect of Mesh Discritization for Single Crystal Transformation-induced Plasticity Steel;436
20.4.2;17.4.2 Polycrystal Transformation-induced Plasticity Steel;438
20.5;17.5 Summary;442
20.6;References;442
21;18On Micropolar Theory with Inertia Production;446
21.1;18.1 Introduction;446
21.2;18.2 Outline of the Theory;450
21.3;18.3 Special Cases for the Production Term;454
21.3.1;18.3.1 Milling Matter in a Crusher;454
21.3.2;18.3.2 Turning Heat Conduction into Space-varying Rotational Motion;458
21.3.3;18.3.3 Dipolar Polarization;461
21.4;18.4 Conclusions and Outlook;463
21.5;References;465
22;19Hencky Strain and Logarithmic Rate for Unified Approach to Constitutive Modeling of Continua;468
22.1;19.1 Introduction;469
22.2;19.2 Hencky Invariants and Rubber-like Elasticity;470
22.2.1;19.2.1 Modeling of Rubber-like Elasticity;470
22.2.2;19.2.2 Direct Potential with Hencky Strain;471
22.2.3;19.2.3 Bridging Invariants and Mode Invariant;472
22.2.4;19.2.4 Elastic Potentials Automatically Reproducing Uniaxial and Biaxial Responses;473
22.2.5;19.2.5 Elastic Potentials Automatically Reproducing both Uniaxial and Plane-strain Responses;475
22.3;19.3 Self-consistent Prandtl-Reuss Equations with Log-rate;476
22.3.1;19.3.1 Prandtl-Reuss Equations with Objective Rates;477
22.3.2;19.3.2 Inconsistency Issues with Zaremba-Jaumann Rate;479
22.3.3;19.3.3 Self-consistent Formulation with Log-rate;480
22.3.4;19.3.4 Remarks on Recently Raised Issues;482
22.4;19.4 Log-rate-based Elastoplastic J2?flow Equations for Shape Memory Alloy Pseudo-elasticity;487
22.5;19.5 Log-rate-based Elastoplastic Equations for Shape Memory Effects;489
22.5.1;19.5.1 Log-rate-based Elastoplastic Equations with Thermal Effects;489
22.5.2;19.5.2 Plastic Flow Induced at Pure Heating;490
22.5.3;19.5.3 Recovery Effect;491
22.5.4;19.5.4 Further Results;492
22.6;19.6 Innovative Elastoplastic Equations Automatically Incorporating Failure Effects;493
22.6.1;19.6.1 New Elastoplastic Constitutive Equations;494
22.6.2;19.6.2 A Criterion for Critical Failure States;495
22.6.3;19.6.3 Full-strain-range Response up to Failure;496
22.6.4;19.6.4 Failure Effects Under Various Stress Amplitudes;496
22.7;19.7 Deformable Micro-continua for Quantum Entities at Atomic Scale;498
22.7.1;19.7.1 The Quantum-continua;498
22.7.2;19.7.2 Continuity Equation and Balance Equations;499
22.7.3;19.7.3 Constitutive Equation for Deformability Nature;500
22.7.4;19.7.4 Inherent Response Features of the Quantum-continua;500
22.7.5;19.7.5 New Patterns for Hydrogen Atom as Quantum-continuum;501
22.7.6;19.7.6 New Insight into the Uncertainty Principle;503
22.7.7;19.7.7 Remarks;505
22.8;19.8 Concluding Remarks;505
22.9;References;506
23;20A Multi-disciplinary Approach for Mechanical Metamaterial Synthesis: A Hierarchical Modular Multiscale Cellular Structure Paradigm;510
23.1;20.1 Introduction;511
23.2;20.2 Synergistic Approach for Metamaterial Synthesis and Fabrication;517
23.3;20.3 Digital Image Correlation-based Metamaterial Design Process;519
23.4;20.4 Preliminary Results;521
23.5;20.5 Conclusion;523
23.6;References;524



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.