Buch, Englisch, 171 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 306 g
Reihe: Springer Theses
Hardware Reservoir Computers and Software Image Processing
Buch, Englisch, 171 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 306 g
Reihe: Springer Theses
ISBN: 978-3-030-08164-5
Verlag: Springer International Publishing
Recently, photonic implementations of reservoir computing (a machine learning algorithm based on artificial neural networks) have made a breakthrough in optical computing possible. In this book, the author pushes the performance of these systems significantly beyond what was achieved before. By interfacing a photonic reservoir computer with a high-speed electronic device (an FPGA), the author successfully interacts with the reservoir computer in real time, allowing him to considerably expand its capabilities and range of possible applications. Furthermore, the author draws on his expertise in machine learning and FPGA programming to make progress on a very different problem, namely the real-time image analysis of optical coherence tomography for atherosclerotic arteries.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Optische Nachrichtentechnik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Mikroprozessoren
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
Weitere Infos & Material
Introduction.- Online Training of a Photonic Reservoir Computer.- Backpropagation with Photonics.- Photonic Reservoir Computer with Output Feedback.- Towards Online-Trained Analogue Readout Layer.- Real-Time Automated Tissue Characterisation for Intravascular OCT Scans.- Conclusion and Perspectives.