E-Book, Englisch, 402 Seiten
Aravilli Privacy-Preserving Machine Learning
1. Auflage 2024
ISBN: 978-1-80056-422-0
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
A use-case-driven approach to building and protecting ML pipelines from privacy and security threats
E-Book, Englisch, 402 Seiten
ISBN: 978-1-80056-422-0
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 0 - No protection
No detailed description available for "Privacy-Preserving Machine Learning".
Fachgebiete
Weitere Infos & Material
Table of Contents - Introduction to Data Privacy, Privacy threats and breaches
- Machine Learning Phases and privacy threats/attacks in each phase
- Overview of Privacy Preserving Data Analysis and Introduction to Differential Privacy
- Differential Privacy Algorithms, Pros and Cons
- Developing Applications with Different Privacy using open source frameworks
- Need for Federated Learning and implementing Federated Learning using open source frameworks
- Federated Learning benchmarks, startups and next opportunity
- Homomorphic Encryption and Secure Multiparty Computation
- Confidential computing - what, why and current state
- Privacy Preserving in Large Language Models