Buch, Englisch, 330 Seiten, Paperback, Format (B × H): 178 mm x 235 mm, Gewicht: 600 g
An Introduction to Lie Group Theory
Buch, Englisch, 330 Seiten, Paperback, Format (B × H): 178 mm x 235 mm, Gewicht: 600 g
Reihe: Springer Undergraduate Mathematics Series
ISBN: 978-1-85233-470-3
Verlag: Springer
The main focus is on matrix groups, i.e., closed subgroups of real and complex general linear groups. The first part studies examples and describes the classical families of simply connected compact groups. The second part introduces the idea of a lie group and studies the associated notion of a homogeneous space using orbits of smooth actions.
Throughout, the emphasis is on providing an approach that is accessible to readers equipped with a standard undergraduate toolkit of algebra and analysis. Although the formal prerequisites are kept as low level as possible, the subject matter is sophisticated and contains many of the key themes of the fully developed theory, preparing students for a more standard and abstract course in Lie theory and differential geometry.
Zielgruppe
Lower undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Geometrie Nicht-Euklidische Geometrie
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
Weitere Infos & Material
I. Basic Ideas and Examples.- 1. Real and Complex Matrix Groups.- 2. Exponentials, Differential Equations and One-parameter Subgroups.- 3. Tangent Spaces and Lie Algebras.- 4. Algebras, Quaternions and Quaternionic Symplectic Groups.- 5. Clifford Algebras and Spinor Groups.- 6. Lorentz Groups.- II. Matrix Groups as Lie Groups.- 7. Lie Groups.- 8. Homogeneous Spaces.- 9. Connectivity of Matrix Groups.- III. Compact Connected Lie Groups and their Classification.- 10. Maximal Tori in Compact Connected Lie Groups.- 11. Semi-simple Factorisation.- 12. Roots Systems, Weyl Groups and Dynkin Diagrams.- Hints and Solutions to Selected Exercises.