Bandyopadhyay | Geometry, Topology and Quantization | Buch | 978-0-7923-4305-9 | sack.de

Buch, Englisch, Band 386, 230 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1150 g

Reihe: Mathematics and Its Applications

Bandyopadhyay

Geometry, Topology and Quantization


1996
ISBN: 978-0-7923-4305-9
Verlag: Springer Netherlands

Buch, Englisch, Band 386, 230 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 1150 g

Reihe: Mathematics and Its Applications

ISBN: 978-0-7923-4305-9
Verlag: Springer Netherlands


This is a monograph on geometrical and topological features which arise in various quantization procedures. Quantization schemes consider the feasibility of arriving at a quantum system from a classical one and these involve three major procedures viz. i) geometric quantization, ii) Klauder quantization, and iii) stochastic quanti­ zation. In geometric quantization we have to incorporate a hermitian line bundle to effectively generate the quantum Hamiltonian operator from a classical Hamil­ tonian. Klauder quantization also takes into account the role of the connection one-form along with coordinate independence. In stochastic quantization as pro­ posed by Nelson, Schrodinger equation is derived from Brownian motion processes; however, we have difficulty in its relativistic generalization. It has been pointed out by several authors that this may be circumvented by formulating a new geometry where Brownian motion proceses are considered in external as well as in internal space and, when the complexified space-time is considered, the usual path integral formulation is achieved. When this internal space variable is considered as a direc­ tion vector introducing an anisotropy in the internal space, we have the quantization of a Fermi field. This helps us to formulate a stochastic phase space formalism when the internal extension can be treated as a gauge theoretic extension. This suggests that massive fermions may be considered as Skyrme solitons. The nonrelativistic quantum mechanics is achieved in the sharp point limit.

Bandyopadhyay Geometry, Topology and Quantization jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Manifold and Differential Forms.- 2 Spinor Structure and Twistor Geometry.- 3 Quantization.- 4 Quantization And Gauge Field.- 5 Fermions and Topology.- 6 Topological Field Theory.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.