Buch, Englisch, Band 200, 435 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1810 g
Buch, Englisch, Band 200, 435 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1810 g
Reihe: Graduate Texts in Mathematics
ISBN: 978-0-387-98948-8
Verlag: Springer
It now appears that there is a reasonable answer. Finsler geometry encompasses a solid repertoire of rigidity and comparison theorems, most of them founded upon a fruitful analogue of the sectional curvature. There is also a bewildering array of explicit examples, illustrating many phenomena which admit only Finslerian interpretations. This book focuses on the elementary but essential items among these results. Much thought has gone into making the account a teachable one.
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
One Finsler Manifolds and Their Curvature.- 1 Finsler Manifolds and the Fundamentals of Minkowski Norms.- 2 The Chern Connection.- 3 Curvature and Schur’s Lemma.- 4 Finsler Surfaces and a Generalized Gauss—Bonnet Theorem.- Two Calculus of Variations and Comparison Theorems.- 5 Variations of Arc Length, Jacobi Fields, the Effect of Curvature.- 6 The Gauss Lemma and the Hopf-Rinow Theorem.- 7 The Index Form and the Bonnet-Myers Theorem.- 8 The Cut and Conjugate Loci, and Synge’s Theorem.- 9 The Cartan-Hadamard Theorem and Rauch’s First Theorem.- Three Special Finsler Spaces over the Reals.- 10 Berwald Spaces and Szabó’s Theorem for Berwald Surfaces.- 11 Randers Spaces and an Elegant Theorem.- 12 Constant Flag Curvature Spaces and Akbar-Zadeh’s Theorem.- 13 Riemannian Manifolds and Two of Hopf’s Theorems.- 14 Minkowski Spaces, the Theorems of Deicke and Brickell.