E-Book, Englisch, 398 Seiten
Bart / Scholl Innovative Heat Exchangers
1. Auflage 2018
ISBN: 978-3-319-71641-1
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 398 Seiten
ISBN: 978-3-319-71641-1
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This accessible book presents unconventional technologies in heat exchanger design that have the capacity to provide solutions to major concerns within the process and power-generating industries. Demonstrating the advantages and limits of these innovative heat exchangers, it also discusses micro- and nanostructure surfaces and micro-scale equipment, and introduces pillow-plate, helical and expanded metal baffle concepts. It offers step-by-step worked examples, which provide instructions for developing an initial configuration and are supported by clear, detailed drawings and pictures. Various types of heat exchangers are available, and they are widely used in all fields of industry for cooling or heating purposes, including in combustion engines. The market in 2012 was estimated to be U$ 42.7 billion and the global demand for heat exchangers is experiencing an annual growth of about 7.8 %. The market value is expected to reach U$ 57.9 billion in 2016, and approach U$ 78.16 billion in 2020. Providing a valuable introduction to students and researchers, this book offers clear and concise information to thermal engineers, mechanical engineers, process engineers and heat exchanger specialists.
Since 1994 Prof. Hans-Jörg Bart has been the Chair of Separation Science and Technology at the Technische Universität Kaiserslautern, Germany. Prior to this he was head of the Christian Doppler Laboratory of Modelling Reactive Systems in Process Engineering at the University of Technology, Graz, Austria. He has over 30 years of experience in heat and mass transfer in basic unit operations and two-phase flow simulations. His special research interest is the design and operation of polymeric heat exchangers as an interesting niche technology. He has published more than 300 scientific papers in peer-reviewed international journals and has edited and contributed to several books and book chapters. Dr. Stephan Scholl has been a professor of chemical and thermal process engineering and director of the relevant institute at the Technische Universität Braunschweig, Germany. From 1991 to 2002 he worked as an R&D engineer, logistics consultant and senior research manager at BASF AG, Ludwigshafen, Germany. He has over 23 years of industrial as well as academic experience in heat transfer with an emphasis on evaporation, distillation, equipment design as well as fouling and cleaning. His research interests include the design of sustainable processes with a focus on recycling strategies as well as ecological assessment of the related processes. He has contributed to several monographs on these topics and has published more than 120 scientific papers in peer-reviewed international journals.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;7
3;Contributors;9
4;1 Polymer Film Heat Exchangers;11
4.1;Abstract;11
4.2;1 Introduction;15
4.3;2 Materials and Physical Properties;18
4.4;3 Wetting Characteristics;27
4.5;4 Heat Transfer;39
4.6;5 Scaling and Fouling;45
4.7;6 Conclusions;57
4.8;Acknowledgements;58
4.9;References;58
5;2 Polymer Composite Heat Exchangers;63
5.1;Abstract;63
5.2;1 Introduction;66
5.3;2 Polymer-Based Heat Exchangers;68
5.3.1;2.1 Comparison of Polymers with Metals for Use in Heat Exchangers;69
5.3.2;2.2 Polymer Heat Exchangers;71
5.3.3;2.3 Thermally Conductive Polymer Composites and Their Applications;72
5.3.4;2.4 Fouling on Polymer Surfaces;75
5.4;3 High-Performance Polymer Composite Tubes for Heat Exchangers;81
5.4.1;3.1 Material Selection;81
5.4.1.1;3.1.1 Polymer Matrix Materials;81
5.4.1.2;3.1.2 Thermally Conductive Fillers;84
5.4.2;3.2 Advanced Extrusion Process and Particle Orientation;87
5.5;4 Material Properties of High-Performance Polymer Composite Tubes;89
5.5.1;4.1 Thermal Properties;89
5.5.1.1;4.1.1 Thermal Conductivity Measurement;89
5.5.1.2;4.1.2 Thermal Conductivity;90
5.5.1.3;4.1.3 Thermal Expansion;91
5.5.2;4.2 Mechanical Properties;92
5.5.3;4.3 Lifetime Behaviour;93
5.6;5 Chemical Resistance;95
5.7;6 Experimental Investigations;97
5.7.1;6.1 Heat Transfer in Falling Film Evaporation;97
5.7.2;6.2 Crystallization Fouling on Polymer Composite Tubes;102
5.7.2.1;6.2.1 Calcium Sulphate Fouling in a Stirred Vessel Test Rig;102
5.7.2.2;6.2.2 Mixed Salt Fouling in a Horizontal Tube Falling Film Evaporator;106
5.8;7 Design Aspects;111
5.8.1;7.1 Mounting of Polymer Composite Tubes in Tube Plates;111
5.8.2;7.2 Flow-Induced Tube Vibrations;114
5.8.2.1;7.2.1 Reverse Bending Cycle and Vibration Tests;114
5.8.2.2;7.2.2 Maximum Unsupported Tube Span;115
5.8.3;7.3 Tube Geometries;118
5.9;8 Potential Applications;119
5.10;9 Conclusions and Future Prospects;122
5.11;Acknowledgements;123
5.12;References;123
6;3 Innovative Design of Microstructured Plate-and-Frame Heat Exchangers;127
6.1;Abstract;127
6.2;1 Introduction;128
6.3;2 Measures to Increase Heat Transfer;129
6.4;3 The Effect of Axial Heat Transfer;139
6.5;4 Applications of Microchannel Heat Exchangers;141
6.6;References;143
7;4 Heat Transfer in Evaporation on Micro- and Macrostructured Tubes;145
7.1;Abstract;145
7.2;1 Introduction;147
7.3;2 Calculation Method for Heat Transfer for Practical Belongs;150
7.4;3 Surface Characterization of the Micro- and Macrostructure;159
7.5;4 Influence of the Microstructure on the Heat Transfer;165
7.6;5 Influence of the Macrostructure on Heat Transfer;169
7.7;6 Conclusion;174
7.8;References;175
8;5 Multi-stream Plate-and-Frame Heat Exchangers for Condensation and Evaporation;177
8.1;Abstract;177
8.2;1 The Multi-stream Concept;180
8.3;2 State of the Art;184
8.4;3 Single-Phase Flow and Flow Pattern;184
8.5;4 Pressure Drop and Heat Transfer of Two-Phase Flow in PHE;188
8.6;5 Entropy Production in Plate Heat Exchangers;193
8.7;References;196
9;6 Low-Finned Tubes for Condensation;198
9.1;Abstract;198
9.2;1 Basics on Condensation;201
9.3;2 Basics on Low-Finned Tubes;203
9.3.1;2.1 Definition of Surface Area;203
9.3.2;2.2 Fluid Dynamics and Flooding Angle;206
9.4;3 Single Tubes and Tube Bundles;208
9.5;4 Condensation of Pure Substances;211
9.5.1;4.1 Free Convection;213
9.5.2;4.2 Forced Convection;219
9.5.3;4.3 Special Cases: High Surface Tension;220
9.5.4;4.4 Theoretical Models;221
9.5.5;4.5 Summary;226
9.6;5 Condensation of Mixtures;227
9.6.1;5.1 Basics on the Condensation of Mixtures;228
9.6.2;5.2 Condensation on Low-Finned Tubes;230
9.6.3;5.3 Theoretical Models;235
9.6.4;5.4 Summary;237
9.7;References;238
10;7 Pillow-Plate Heat Exchangers: Fundamental Characteristics;241
10.1;Abstract;241
10.2;1 Introduction;243
10.2.1;1.1 Manufacturing and Operating Principle;243
10.2.2;1.2 Basic Design;245
10.2.3;1.3 General Application Areas;248
10.3;2 Geometry Characteristics;248
10.3.1;2.1 Heat Transfer Area;250
10.3.2;2.2 Cross-sectional Area;251
10.3.3;2.3 Characteristic Lengths;252
10.3.4;2.4 Welding Points;252
10.4;References;252
11;8 Single-Phase Flow and Condensation in Pillow-Plate Condensers;254
11.1;Abstract;254
11.2;1 Introduction;256
11.3;2 Applications in Condensation;256
11.4;3 Condenser Design;259
11.5;4 Cooling Stage;261
11.5.1;4.1 Heat Transfer;262
11.5.2;4.2 Fluid Dynamics;265
11.6;5 Condensation Stage Heat Transfer;266
11.7;6 Pillow-Plate Condensers for the Future Applications;270
11.7.1;6.1 Additional Inserts;270
11.7.2;6.2 Surface Structuring;271
11.8;References;272
12;9 Pillow Plate Heat Exchangers as Falling Film Evaporator or Thermosiphon Reboiler;273
12.1;Abstract;273
12.2;1 Introduction;275
12.3;2 Pillow Plate Falling Film Evaporators;275
12.3.1;2.1 Design and Operating Principle;276
12.3.2;2.2 Minimum Wetting Rate and Average Film Thickness;277
12.3.3;2.3 Flow Pattern and Film Thickness Distribution;280
12.3.4;2.4 Heat Transfer;283
12.4;3 Pillow Plate Thermosiphon Reboilers;283
12.4.1;3.1 Experimental Test Rig for Pillow Plate Thermosiphon Reboiler;284
12.4.2;3.2 Operating Principle and Characteristics;285
12.4.2.1;3.2.1 Characteristic Temperature Profiles;286
12.4.2.2;3.2.2 Fluid dynamic Behavior;287
12.4.3;3.3 Heat Transfer Performance of Pillow Plate Thermosiphon Reboilers;290
12.4.3.1;3.3.1 Single-Component Evaporation;290
12.4.3.2;3.3.2 Mixture Evaporation;292
12.4.4;3.4 Thermal Modeling and Simulation;295
12.4.4.1;3.4.1 Extraction of Experimental Heat Transfer Coefficients;295
12.4.4.2;3.4.2 Estimation of Single-Phase Heat Transfer Coefficients;296
12.4.4.3;3.4.3 Estimation of Evaporation Heat Transfer Coefficients;297
12.5;4 Summary;298
12.6;References;299
13;10 hiTRAN® Thermal Systems in Tubular Heat Exchanger Design;301
13.1;Abstract;301
13.2;1 Introduction;303
13.3;2 hiTRAN® Thermal Systems in Single-Phase Pipe Flow;304
13.3.1;2.1 Hydrodynamics in Adiabatic Pipe Flow with hiTRAN;304
13.3.2;2.2 Heat Transfer Characteristics in Viscous Empty Tube Flow;306
13.3.2.1;2.2.1 Thermal Stratification;307
13.3.3;2.3 Enhanced Heat Transfer and Flow Distribution in hiTRAN® Flow;310
13.3.3.1;2.3.1 Elimination of Flow Stratification with hiTRAN;313
13.3.3.2;2.3.2 Improved Bundle Fluid Distribution;315
13.3.3.3;2.3.3 Summary of hiTRAN® Thermal Systems in Single-Phase Flow;315
13.3.4;2.4 Revamp in Single-Phase Applications;316
13.3.4.1;2.4.1 Modification of Pass Arrangement;316
13.3.4.2;2.4.2 Switch of Shell Arrangement;317
13.3.4.3;2.4.3 Part Installation of hiTRAN;318
13.3.5;2.5 Case Study;318
13.4;3 hiTRAN® Thermal Systems in Two-Phase Pipe Flow;320
13.4.1;3.1 hiTRAN® in Condensing Applications;320
13.4.1.1;3.1.1 Single-Component Condensation with hiTRAN;321
13.4.1.2;3.1.2 MultiComponent Condensation with hiTRAN;322
13.4.1.3;3.1.3 Condensation in Horizontal Tubes;324
13.4.1.4;3.1.4 Subcooling of Condensate;325
13.4.2;3.2 hiTRAN® in Boiling Applications;325
13.4.2.1;3.2.1 Shell and Tube Side Reboilers;327
13.4.2.2;3.2.2 Shell and Tube Vaporizers;329
13.4.2.3;3.2.3 Falling Film Evaporators;335
13.4.2.4;3.2.4 Summary of the Use of hiTRAN® Technology in Two-Phase Flow Applications;338
13.5;4 Fouling in Tubular Heat Exchangers Equipped with hiTRAN® Thermal Systems;339
13.5.1;4.1 Increased Wall Shear;339
13.5.2;4.2 Change in Tube Wall Temperatures;340
13.5.3;4.3 Residence Time at Elevated Temperatures;342
13.5.4;4.4 Waxing Fouling in Air Coolers;342
13.6;References;343
14;11 EMbaffle® Heat Exchange Technology;346
14.1;Abstract;346
14.2;1 Introduction;348
14.3;2 Principles of EMbaffle® Technology;350
14.4;3 The Advantage of EMbaffle® Technology;353
14.4.1;3.1 Vibrations in EMbaffle®;353
14.4.2;3.2 LMTD in EMbaffle®;356
14.4.3;3.3 EMbaffle® in Limited Pressure Drops Services;357
14.4.4;3.4 Fouling in EMbaffle®;358
14.5;4 Advanced EMbaffle® Designs;360
14.6;5 EMbaffle® Design Cases;362
14.6.1;5.1 Design Case-1: Overhead Gas Cooler;362
14.6.2;5.2 Design Case-2: Cycle Gas Cooler;364
14.7;References;365
15;12 Innovative Adsorbent Heat Exchangers: Design and Evaluation;367
15.1;Abstract;367
15.2;1 Introduction;369
15.3;2 Adsorbent Materials and Coatings;373
15.4;3 Heat Exchanger Design Criteria;376
15.4.1;3.1 COP-Based Pre-evaluation of Adsorbent Heat Exchanger Designs;379
15.4.2;3.2 Analyzing Heat and Mass Transfer Resistances;384
15.4.2.1;3.2.1 Resistance–Capacitance Model;384
15.4.2.2;3.2.2 Analysis of Resistances;385
15.4.2.3;3.2.3 Resistance Evaluation and Overall Resistance;387
15.4.2.4;3.2.4 Detailed Heat and Mass Transfer Analysis;389
15.4.3;3.3 Typical and Attractive Heat Exchanger Geometries;389
15.5;4 Improved Adsorbent Heat Exchangers—Examples;391
15.5.1;4.1 Finned-Tube Heat Exchanger with Granules;391
15.5.2;4.2 Fin-and-Tube Heat Exchanger with Binder-Based Coating;393
15.5.3;4.3 Fiber-and-Tube Heat Exchanger with Direct Crystallization;394
15.6;References;395




