Basile / Di Paola / Hai | Membrane Reactors for Energy Applications and Basic Chemical Production | E-Book | sack.de
E-Book

E-Book, Englisch, 696 Seiten

Reihe: Woodhead Publishing Series in Energy

Basile / Di Paola / Hai Membrane Reactors for Energy Applications and Basic Chemical Production


1. Auflage 2015
ISBN: 978-1-78242-227-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 696 Seiten

Reihe: Woodhead Publishing Series in Energy

ISBN: 978-1-78242-227-3
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Membrane Reactors for Energy Applications and Basic Chemical Production presents a discussion of the increasing interest in membrane reactors that has emerged in recent years from both the scientific and industrial communities, in particular their usage for energy applications and basic chemical production. Part One of the text investigates membrane reactors for syngas and hydrogen production, while Part Two examines membrane reactors for other energy applications, including biodiesel and bioethanol production. The final section of the book reviews the use of membrane reactors in basic chemical production, including discussions of the use of MRs in ammonia production and the dehydrogenation of alkanes to alkenes. - Provides comprehensive coverage of membrane reactors as presented by a world-renowned team of experts - Includes discussions of the use of membrane reactors in ammonia production and the dehydrogenation of alkanes to alkenes - Tackles the use of membrane reactors in syngas, hydrogen, and basic chemical production - Keen focus placed on the industry, particularly in the use of membrane reactor technologies in energy

Basile / Di Paola / Hai Membrane Reactors for Energy Applications and Basic Chemical Production jetzt bestellen!

Weitere Infos & Material


1;Front
Cover;1
2;Related titles;3
3;Membrane Reactors for Energy Applications and Basic Chemical ProductionWoodhead Publishing Series in Energy: Number 76Edite ...;4
4;Copyright;5
5;Contents;6
6;List of contributors;14
7;Woodhead Publishing Series in Energy;16
8;Preface;20
9;Part One -
Membrane reactors for syngas and hydrogen production;24
9.1;1 - Water gas shift membrane reactors;26
9.1.1;1.1 Water gas shift in conventional reactors;26
9.1.2;1.2 Traditional water gas shift (WGS) process;30
9.1.3;1.3 Catalysts for the WGS reaction;32
9.1.4;1.4 Models for the kinetic interpretation of WGS;34
9.1.5;1.5 WGS regime in Fischer–Tropsch synthesis;35
9.1.6;1.6 Membrane reactor technology for the WGS reaction;39
9.1.7;1.7 Conclusion;47
9.1.8;References;47
9.1.9;1. Appendix: list of symbols and acronyms;52
9.2;2 - Membrane reactors for methane steam reforming (MSR);54
9.2.1;2.1 Introduction;54
9.2.2;2.2 Methane steam reforming (MSR) kinetic;58
9.2.3;2.3 MSR and catalysts;59
9.2.4;2.4 MSRs and membrane reactors (MRs);63
9.2.5;2.5 Conclusion and future trends;74
9.2.6;References;75
9.2.7;2. Appendix: list of symbols and acronyms;82
9.3;3 - Membrane reactors for autothermal reforming of methane, methanol, and ethanol;84
9.3.1;3.1 Introduction: hydrogen production;84
9.3.2;3.2 Methane and other sources for hydrogen;85
9.3.3;3.3 Conventional processes for autothermal reforming;90
9.3.4;3.3.1 Autothermal reforming of methane;91
9.3.5;3.4 The membrane reactor concepts: packed beds versus fluidized beds;96
9.3.6;3.5 Modeling aspects;101
9.3.7;3.6 Conclusions and future trends;114
9.3.8;References;115
9.3.9;3. Appendix: nomenclature;119
9.4;4 - Membrane reactors for dry reforming of methane;122
9.4.1;4.1 Introduction;122
9.4.2;4.2 Solid catalysts for methane dry reforming in traditional and membrane reactors;126
9.4.3;4.3 Membrane reactors: why to use them;133
9.4.4;4.4 Membrane reactors for methane dry reforming;140
9.4.5;4.5 Thermal request: a difficult challenge;157
9.4.6;4.6 Methane dry reforming: conclusion and remarks;158
9.4.7;References;159
9.4.8;4. Appendix: acronyms;167
9.5;5 - Membrane reactors for hydrogen production from coal;168
9.5.1;5.1 Introduction;168
9.5.2;5.2 Traditional reactors for hydrogen production from coal and the advantages of membrane reactors;172
9.5.3;5.3 Catalysts for coal gasification;179
9.5.4;5.4 Membrane reactors for hydrogen production from coal;182
9.5.5;5.5 Future trends;197
9.5.6;5.6 Sources of further information and advice;199
9.5.7;Acknowledgment;200
9.5.8;References;200
9.5.9;5. Appendix: list of symbols;209
9.6;6 - Membrane reactors for the conversion of methanol and ethanol to hydrogen;210
9.6.1;6.1 Introduction;210
9.6.2;6.2 Membrane reactors (MRs);212
9.6.3;6.3 Ethanol reforming in membrane reactors;214
9.6.4;6.4 Methanol reforming in membrane reactors;220
9.6.5;6.5 Conclusion and future trends;225
9.6.6;References;226
9.7;7 - Membrane reactors for the decomposition of H2O, NOx and CO2 to produce hydrogen;232
9.7.1;7.1 Introduction;232
9.7.2;7.2 Membrane reactors for H2O decomposition;233
9.7.3;7.3 Membrane reactors for nitrous oxide decomposition;251
9.7.4;7.4 Membrane reactors for CO2 decomposition;257
9.7.5;7.5 The main challenges;262
9.7.6;7.6 Conclusion and future trends;262
9.7.7;References;263
9.7.8;7. Appendix: acronyms;270
9.8;8 - Membrane reactors for steam reforming of glycerol and acetic acid to produce hydrogen;272
9.8.1;8.1 Introduction;272
9.8.2;8.2 Membrane reactor technology;273
9.8.3;8.3 Glycerol steam reforming reaction for hydrogen production;276
9.8.4;8.4 Acetic acid steam reforming reaction for hydrogen production;281
9.8.5;8.5 Conclusion and future trends;285
9.8.6;References;286
9.8.7;8. Appendix: list of symbols and acronyms;289
9.9;9 - Membrane reactors for biohydrogen production and processing;290
9.9.1;9.1 Overview;290
9.9.2;9.2 Feedstock;292
9.9.3;9.3 Fermentative biohydrogen: microorganisms and enzymatic systems;296
9.9.4;9.4 Biohydrogen reactors;298
9.9.5;9.5 Conclusions and future trends;302
9.9.6;References;303
9.9.7;9. Appendix: list of acronyms;309
10;Part Two -
Membrane reactors for other energy applications;310
10.1;10 - Membrane reactors for biodiesel production and processing;312
10.1.1;10.1 Introduction;312
10.1.2;10.2 Conventional methods for biodiesel production;313
10.1.3;10.3 Catalysts used in conventional methods;316
10.1.4;10.4 Weak points of conventional methods in biodiesel production;319
10.1.5;10.5 Membrane technology as process intensification in biodiesel production;320
10.1.6;10.6 Membrane technology: production and separation of biodiesel;320
10.1.7;10.7 Merits and limitations of using membrane reactors in biodiesel production;326
10.1.8;10.8 Other considerations;326
10.1.9;10.9 Stability of biodiesel;328
10.1.10;10.10 Conclusion;329
10.1.11;References;329
10.1.12;10. Appendix: list of acronyms;335
10.2;11 - Membrane reactors for bioethanol production and processing;336
10.2.1;11.1 Introduction;336
10.2.2;11.2 Bioethanol from different feedstocks: environmental impact assessment;337
10.2.3;11.3 Pretreatment of lignocellulosic biomass: physicochemical versus biological pretreatment;339
10.2.4;11.4 Recovery of side products during lignocellulose pretreatment;340
10.2.5;11.5 Bioethanol recovery from fermentation broths and process intensification;346
10.2.6;11.6 Dehydration of water/alcohol mixtures;353
10.2.7;11.7 Consolidation of unit processes;354
10.2.8;11.8 Summary and future outlook;356
10.2.9;Acknowledgment;358
10.2.10;References;358
10.2.11;11. Appendix: list of abbreviations;366
10.3;12 - Membrane reactors for biogas production and processing;368
10.3.1;12.1 Introduction;368
10.3.2;12.2 Basic principles of anaerobic digestion;368
10.3.3;12.3 Membrane bioreactor for biogas production;371
10.3.4;12.4 Membrane fouling;380
10.3.5;12.5 Progress in other applications for biogas production;383
10.3.6;12.6 Conclusions;384
10.3.7;References;384
10.3.8;12. Appendix: list of acronyms;388
10.4;13 - The use of membranes in oxygen and hydrogen separation in integrated gasification combined cycle (IGCC) power plants;390
10.4.1;13.1 Introduction;390
10.4.2;13.2 Coal gasification technology for power generation and hydrogen production;390
10.4.3;13.3 Integration of oxygen membranes in integrated gasification combined cycle (IGCC) plants;403
10.4.4;13.4 Integration of hydrogen membranes in IGCC plants;405
10.4.5;13.5 Processes for treatment of CO2-rich streams from hydrogen separation membrane modules;416
10.4.6;13.6 Conclusions and future trends;417
10.4.7;References;417
10.4.8;13. Appendix: list of abbreviations;419
10.5;14 - Membrane reactors for the desulfurization of power plant gas emissions and transportation fuels;420
10.5.1;14.1 Introduction;420
10.5.2;14.2 Membrane reactors for the desulfurization of gases;433
10.5.3;14.3 Membrane reactors for the desulfurization of transportation fuels;445
10.5.4;14.4 Future trends;451
10.5.5;14.5 Conclusions;452
10.5.6;References;453
10.5.7;14. Appendix: list of symbols and subscripts;458
10.6;Chapter 15 - Electrocatalytic membrane reactors (eCMRs) for fuel cell and other applications;462
10.6.1;15.1 Introduction;462
10.6.2;15.2 Generic fuel cell electrocatalytic membrane reactor;463
10.6.3;15.3 Operating temperature versus overpotential in an electrocatalytic membrane reactor;466
10.6.4;15.4 The electrocatalytic membrane reactor modi operandi;469
10.6.5;15.5 The electrocatalytic membrane reactor performance characteristics;471
10.6.6;15.6 The electrocatalytic membrane reactor in the fuel cell mode: polymer-electrolyte membrane (PEM) fuel cell;473
10.6.7;15.7 The electrocatalytic membrane reactor in the fuel cell mode: cogeneration of chemicals and electric power;475
10.6.8;15.8 The electrocatalytic membrane reactor in the electrolytic mode;485
10.6.9;15.9 The electrocatalytic membrane reactor in the ion-pumping mode: gas enrichment and compression;494
10.6.10;15.10 Future trends;501
10.6.11;15.11 Conclusions;504
10.6.12;References;504
10.6.13;15. Appendix: nomenclature, greek symbols, subscripts/superscripts and abbreviations;508
11;Part Three -
Membrane reactors for basic chemical production;512
11.1;16 - Membrane reactors for the dehydrogenation of alkanes to alkenes;514
11.1.1;16.1 Introduction;514
11.1.2;16.2 Dehydrogenation of cyclohexane, methylcyclohexane, and the mixtures;516
11.1.3;16.3 Dehydrogenations in catalytic reforming of n-hexanes;524
11.1.4;16.4 Dehydrogenation of ethylbenzene;532
11.1.5;16.5 Conclusion;538
11.1.6;References;539
11.1.7;16. Appendix: list of symbols and subscripts;541
11.2;17 - Membrane reactors for oxidative coupling of methane to produce syngas and other chemicals;542
11.2.1;17.1 Introduction;542
11.2.2;17.2 Oxygen-permeable membranes;542
11.2.3;17.3 Oxidative coupling of methane by using oxygen-permeable membranes;544
11.2.4;17.4 Membrane materials;544
11.2.5;17.5 Ceria-based oxygen-permeable membranes for oxidative coupling of methane;546
11.2.6;17.6 Development of tape-cast membranes;549
11.2.7;17.7 Fabrication of membrane-type partial oxidation reformer and its reforming properties;553
11.2.8;17.8 Exergy analysis of the membrane-type partial oxidation reformer;557
11.2.9;17.9 Conclusion;561
11.2.10;17.10 Future prospects;561
11.2.11;References;561
11.2.12;17. Appendix: list of symbols and acronyms;563
11.3;18 - Membrane reactors for ammonia production;566
11.3.1;18.1 Introduction: chemical principles and industrial applications;566
11.3.2;18.2 Traditional reactors and membrane reactors for ammonia production;566
11.3.3;18.3 Electrocatalytic membrane reactor for ammonia production;569
11.3.4;18.4 Catalysts for ammonia production;573
11.3.5;18.5 Materials for electrolyte membrane;579
11.3.6;18.6 Factors affecting the ammonia formation rate;582
11.3.7;18.7 Conclusions and future trends;583
11.3.8;References;583
11.3.9;18. Appendix: list of symbols, abbreviations and notations;586
11.4;19 - Pervaporation membrane reactors (PVMRs) for esterification;588
11.4.1;19.1 Introduction;588
11.4.2;19.2 Physicochemical properties of esters;588
11.4.3;19.3 Esterification reactions;589
11.4.4;19.4 Industrial relevance of esterification reactions;593
11.4.5;19.5 Reaction-separation coupled methodology;595
11.4.6;19.6 R2-type pervaporation reactors for esterification reaction;599
11.4.7;19.7 R1-type pervaporation membrane reactors (PVMRs) for esterification;616
11.4.8;19.8 Conclusions;617
11.4.9;19.9 Future trends;618
11.4.10;References;619
11.5;20 - Photocatalytic hydrogenation of organic compounds in membrane reactors;628
11.5.1;20.1 Introduction;628
11.5.2;20.2 Fundamentals of photocatalysis and photocatalytic membrane reactors;629
11.5.3;20.3 Studies on the photocatalytic hydrogenation of organic compounds;638
11.5.4;20.4 Photocatalytic hydrogenation of carbon dioxide in membrane reactors;648
11.5.5;20.5 Advances and limitations of photocatalytic membrane reactors (PMRs) in the hydrogenation of organic compounds;650
11.5.6;20.6 Conclusion;652
11.5.7;20.7 Future trends;652
11.5.8;20.8 Sources of further information;652
11.5.9;References;653
11.5.10;20. Appendix: list of symbols and acronyms;661
11.6;21 - Butene oligomerization, phenol synthesis from benzene, butane partial oxidation, and other reactions carried out in me ...;664
11.6.1;21.1 Introduction;664
11.6.2;21.2 Butene oligomerization;664
11.6.3;21.3 Phenol synthesis from benzene;667
11.6.4;21.4 Butane partial oxidation;670
11.6.5;21.5 Cyclohexane dehydrogenation;672
11.6.6;21.6 Ethylbenzene dehydrogenation;674
11.6.7;21.7 Water splitting;677
11.6.8;21.8 Conclusion;679
11.6.9;References;680
11.6.10;21. Appendix: list of acronyms;683
12;Index;684


Woodhead Publishing Series in Energy
1 Generating power at high efficiency: Combined cycle technology for sustainable energy production
Eric Jeffs 2 Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment
Edited by Kenneth L. Nash and Gregg J. Lumetta 3 Bioalcohol production: Biochemical conversion of lignocellulosic biomass
Edited by Keith W. Waldron 4 Understanding and mitigating ageing in nuclear power plants: Materials and operational aspects of plant life management (PLiM)
Edited by Philip G. Tipping 5 Advanced power plant materials, design and technology
Edited by Dermot Roddy 6 Stand-alone and hybrid wind energy systems: Technology, energy storage and applications
Edited by John K. Kaldellis 7 Biodiesel science and technology: From soil to oil
Jan C. J. Bart, Natale Palmeri and Stefano Cavallaro 8 Developments and innovation in carbon dioxide (CO2) capture and storage technology Volume 1: Carbon dioxide (CO2) capture, transport and industrial applications
Edited by M. Mercedes Maroto-Valer 9 Geological repository systems for safe disposal of spent nuclear fuels and radioactive waste
Edited by Joonhong Ahn and Michael J. Apted 10 Wind energy systems: Optimising design and construction for safe and reliable operation
Edited by John D. Sørensen and Jens N. Sørensen 11 Solid oxide fuel cell technology: Principles, performance and operations
Kevin Huang and John Bannister Goodenough 12 Handbook of advanced radioactive waste conditioning technologies
Edited by Michael I. Ojovan 13 Membranes for clean and renewable power applications
Edited by Annarosa Gugliuzza and Angelo Basile 14 Materials for energy efficiency and thermal comfort in buildings
Edited by Matthew R. Hall 15 Handbook of biofuels production: Processes and technologies
Edited by Rafael Luque, Juan Campelo and James Clark 16 Developments and innovation in carbon dioxide (CO2) capture and storage technology Volume 2: Carbon dioxide (CO2) storage and utilisation
Edited by M. Mercedes Maroto-Valer 17 Oxy-fuel combustion for power generation and carbon dioxide (CO2) capture
Edited by Ligang Zheng 18 Small and micro combined heat and power (CHP) systems: Advanced design, performance, materials and applications
Edited by Robert Beith 19 Advances in clean hydrocarbon fuel processing: Science and technology
Edited by M. Rashid Khan 20 Modern gas turbine systems: High efficiency, low emission, fuel flexible power generation
Edited by Peter Jansohn 21 Concentrating solar power technology: Principles, developments and applications
Edited by Keith Lovegrove and Wes Stein 22 Nuclear corrosion science and engineering
Edited by Damien Féron 23 Power plant life management and performance improvement
Edited by John E. Oakey 24 Electrical drives for direct drive renewable energy systems
Edited by Markus Mueller and Henk Polinder 25 Advanced membrane science and technology for sustainable energy and environmental applications
Edited by Angelo Basile and Suzana Pereira Nunes 26 Irradiation embrittlement of reactor pressure vessels (RPVs) in nuclear power plants
Edited by Naoki Soneda 27 High temperature superconductors (HTS) for energy applications
Edited by Ziad Melhem 28 Infrastructure and methodologies for the justification of nuclear power programmes
Edited by Agustín Alonso 29 Waste to energy conversion technology
Edited by Naomi B. Klinghoffer and Marco J. Castaldi 30 Polymer electrolyte membrane and direct methanol fuel cell technology Volume 1: Fundamentals and performance of low temperature fuel cells
Edited by Christoph Hartnig and Christina Roth 31 Polymer electrolyte membrane and direct methanol fuel cell technology Volume 2: In situ characterization techniques for low temperature fuel cells
Edited by Christoph Hartnig and Christina Roth 32 Combined cycle systems for near-zero emission power generation
Edited by Ashok D. Rao 33 Modern earth buildings: Materials, engineering, construction and applications
Edited by Matthew R. Hall, Rick Lindsay and Meror Krayenhoff 34 Metropolitan sustainability: Understanding and improving the urban environment
Edited by Frank Zeman 35 Functional materials for sustainable energy applications
Edited by John A. Kilner, Stephen J. Skinner, Stuart J. C. Irvine and Peter P. Edwards 36 Nuclear decommissioning: Planning, execution and international experience
Edited by Michele Laraia 37 Nuclear fuel cycle science and engineering
Edited by Ian Crossland 38 Electricity transmission, distribution and storage systems
Edited by Ziad Melhem 39 Advances in biodiesel production: Processes and technologies
Edited by Rafael Luque and Juan A. Melero 40 Biomass combustion science, technology and engineering
Edited by Lasse Rosendahl 41 Ultra-supercritical coal power plants: Materials, technologies and optimisation
Edited by Dongke Zhang 42 Radionuclide behaviour in the natural environment: Science, implications and lessons for the nuclear industry
Edited by Christophe Poinssot and Horst Geckeis 43 Calcium and chemical looping technology for power generation and carbon dioxide (CO2) capture: Solid oxygen- and CO2-carriers
Paul Fennell and E. J. Anthony 44 Materials’ ageing and degradation in light water reactors: Mechanisms, and management
Edited by K. L. Murty 45 Structural alloys for power plants: Operational challenges and high-temperature materials
Edited by Amir Shirzadi and Susan Jackson 46 Biolubricants: Science and technology
Jan C. J. Bart, Emanuele Gucciardi and Stefano Cavallaro 47 Advances in wind turbine blade design and materials
Edited by Povl Brøndsted and Rogier P. L. Nijssen 48 Radioactive waste management and contaminated site clean-up: Processes, technologies and international experience
Edited by William E. Lee, Michael I. Ojovan, Carol M. Jantzen 49 Probabilistic safety assessment for optimum nuclear power plant life management (PLiM): Theory and application of reliability analysis methods for major power plant components
Gennadij V. Arkadov, Alexander F. Getman and Andrei N. Rodionov 50 The coal handbook: Towards cleaner production Volume 1: Coal production
Edited by Dave Osborne 51 The coal handbook: Towards cleaner production Volume 2: Coal utilisation
Edited by Dave Osborne 52 The biogas handbook: Science, production and applications
Edited by Arthur Wellinger, Jerry Murphy and David Baxter 53 Advances in biorefineries: Biomass and waste supply chain exploitation
Edited by Keith Waldron 54 Geological storage of carbon dioxide (CO2): Geoscience, technologies, environmental aspects and legal frameworks
Edited by Jon Gluyas and Simon Mathias 55 Handbook of membrane reactors Volume 1: Fundamental materials science, design and...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.