Basu / Shioya / Park | Statistical Inference | E-Book | sack.de
E-Book

Basu / Shioya / Park Statistical Inference

The Minimum Distance Approach
1. Auflage 2011
ISBN: 978-1-4200-9966-9
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

The Minimum Distance Approach

E-Book, Englisch, 429 Seiten

Reihe: Chapman & Hall/CRC Monographs on Statistics & Applied Probability

ISBN: 978-1-4200-9966-9
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



In many ways, estimation by an appropriate minimum distance method is one of the most natural ideas in statistics. However, there are many different ways of constructing an appropriate distance between the data and the model: the scope of study referred to by "Minimum Distance Estimation" is literally huge. Filling a statistical resource gap, Statistical Inference: The Minimum Distance Approach comprehensively overviews developments in density-based minimum distance inference for independently and identically distributed data. Extensions to other more complex models are also discussed.

Comprehensively covering the basics and applications of minimum distance inference, this book introduces and discusses:

- The estimation and hypothesis testing problems for both discrete and continuous models

- The robustness properties and the structural geometry of the minimum distance methods

- The inlier problem and its possible solutions, and the weighted likelihood estimation problem

- The extension of the minimum distance methodology in interdisciplinary areas, such as neural networks and fuzzy sets, as well as specialized models and problems, including semi-parametric problems, mixture models, grouped data problems, and survival analysis.

Statistical Inference: The Minimum Distance Approach gives a thorough account of density-based minimum distance methods and their use in statistical inference. It covers statistical distances, density-based minimum distance methods, discrete and continuous models, asymptotic distributions, robustness, computational issues, residual adjustment functions, graphical descriptions of robustness, penalized and combined distances, weighted likelihood, and multinomial goodness-of-fit tests. This carefully crafted resource is useful to researchers and scientists within and outside the statistics arena.

Basu / Shioya / Park Statistical Inference jetzt bestellen!

Zielgruppe


Statisticians.

Weitere Infos & Material


Introduction
General Notation
Illustrative Examples
Some Background and Relevant Definitions
Parametric Inference based on the Maximum Likelihood Method
Hypothesis Testing by Likelihood Methods
Statistical Functionals and Influence Function
Outline of the Book

Statistical Distances
Introduction
Distances Based on Distribution Functions
Density-Based Distances
Minimum Hellinger Distance Estimation: Discrete Models
Minimum Distance Estimation Based on Disparities: Discrete Models
Some Examples

Continuous Models
Introduction
Minimum Hellinger Distance Estimation
Estimation of Multivariate Location and Covariance
A General Structure
The Basu-Lindsay Approach for Continuous Data
Examples

Measures of Robustness and Computational Issues
The Residual Adjustment Function
The Graphical Interpretation of Robustness
The Generalized Hellinger Distance
Higher Order Influence Analysis
Higher Order Influence Analysis: Continuous Models
Asymptotic Breakdown Properties
The a-Influence Function
Outlier Stability of Minimum Distance Estimators
Contamination Envelopes
The Iteratively Reweighted Least Squares (IRLS)

The Hypothesis Testing Problem
Disparity Difference Test: Hellinger Distance Case
Disparity Difference Tests in Discrete Models
Disparity Difference Tests: The Continuous Case
Power Breakdown of Disparity Difference Tests
Outlier Stability of Hypothesis Tests
The Two Sample Problem

Techniques for Inlier Modification
Minimum Distance Estimation: Inlier Correction in Small Samples
Penalized Distances
Combined Distances
o-Combined Distances
Coupled Distances
The Inlier-Shrunk Distances
Numerical Simulations and Examples

Weighted Likelihood Estimation
The Discrete Case
The Continuous Case
Examples
Hypothesis Testing
Further Reading

Multinomial Goodness-of-fit Testing
Introduction
Asymptotic Distribution of the Goodness-of-Fit Statistics
Exact Power Comparisons in Small Samples
Choosing a Disparity to Minimize the Correction Terms
Small Sample Comparisons of the Test Statistics
Inlier Modified Statistics
An Application: Kappa Statistics

The Density Power Divergence
The Minimum L2 Distance Estimator
The Minimum Density Power Divergence Estimator
A Related Divergence Measure
The Censored Survival Data Problem
The Normal Mixture Model Problem
Selection of Tuning Parameters
Other Applications of the Density Power Divergence

Other Applications
Censored Data
Minimum Hellinger Distance Methods in Mixture Models
Minimum Distance Estimation Based on Grouped Data
Semiparametric Problems
Other Miscellaneous Topics

Distance Measures in Information and Engineering
Introduction
Entropies and Divergences
Csiszar’s f-Divergence
The Bregman Divergence
Extended f-Divergences
Additional Remarks

Applications to Other Models
Introduction
Preliminaries for Other Models
Neural Networks
Fuzzy Theory
Phase Retrieval
Summary



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.