Beck / Boerner / Keane | Selecta Mathematica V | E-Book | sack.de
E-Book

E-Book, Deutsch, Band 201, 260 Seiten, eBook

Reihe: Heidelberger Taschenbücher

Beck / Boerner / Keane Selecta Mathematica V

Ein Paradoxon, der Hase und die Schildkröte. Variationsrechnung a la Caratheodory und das Zermelo'sche Navigationsproblem. Geodätische Strömungen. Konvergente Reihenentwicklungen in der Störungstheorie der Himmelsmechanik
1979
ISBN: 978-3-642-67321-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Ein Paradoxon, der Hase und die Schildkröte. Variationsrechnung a la Caratheodory und das Zermelo'sche Navigationsproblem. Geodätische Strömungen. Konvergente Reihenentwicklungen in der Störungstheorie der Himmelsmechanik

E-Book, Deutsch, Band 201, 260 Seiten, eBook

Reihe: Heidelberger Taschenbücher

ISBN: 978-3-642-67321-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Die im vorliegenden fünften Selecta-Band zusammengefaßten Beiträge behandeln Themen, die etwa durch die Stichworte "Bewegung, Strömung, Mechanik" zu umreißen sind. Zu jedem Beitrag gehört eine Vorgeschichte, die ihn mit berühmten alten Problemstellungen verbindet. Fährt man von Neapel aus nach Süden über Paestum hinaus die lukanische Küste entlang, so kommt man nach etwa einer Stunde zu den ausgegrabenen Ruinen der alten griechischen Stadt Elea (gegr. 540 v. ehr. ), in der die Philosophen Parmenides (ca. 510 - ca. 440 v. ehr. ) und Zenon (ca. 490 - ca. 430 v. ehr. ) gewirkt haben. Von den vier sog. Paradoxien des Zenon (sie sind in der Physik des Aristoteles überliefert und kommentiert) gehören drei zum allgemeinen Gesprächsstoff der sog. Gebildeten: 1. Man kann nicht gehen, denn um ein Stadion zurückzulegen, muß man erst ein halbes Stadion zurücklegen, dazu vorher ein Viertelstadion usw. , ein unendliches Pensum, das man nicht bewältigen kann. 2. Achilles kann die Schild kröte nicht überholen, denn er muß erst einmal deren Start punkt erreichen, dann ist sie aber schon zu einem neuen Punkt vorgerückt, den Achilles als nächstes besuchen muß etc. , wieder ein unendliches und folglich nicht zu bewältigendes Pensum für den armen Helden. 3. Der abgeschossene Pfeil bleibt in der Luft stehen, denn aus den in 1. genannten Gründen kann er keine positive Strecke zurücklegen.

Beck / Boerner / Keane Selecta Mathematica V jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Ein Paradoxon: Der Hase und die Schildkröte.- § 1. Vorbereitungen.- § 2. Die Schildkröte.- § 3. Le lapin agile.- § 4. Der Hase.- § 5. Anwendungen des Paradoxons.- § 6. Schlußbemerkung.- Literatur.- Variationsrechnung à la Carathéodory und das Zermelo’sche Navigationsproblem.- I. Gewöhnliche Variationsprobleme.- II. Variationsprobleme in Parameterdarstellung.- III. Zermelo’s Problem.- Literatur.- Geodätische Strömungen.- § 1. Einleitung.- § 2. Die geodätische Strömung auf der Kugeloberfläche.- § 3. Die geodätische Strömung auf dem platten Torus.- § 4. Die geodätische Strömung auf einer hyperbolischen Fläche.- § 5. Das Billiardspiel im Dreieck.- § 6. Verallgemeinerungen und ungelöste Probleme.- Literatur.- Konvergente Reihenentwicklungen in der Störungstheorie der Himmelsmechanik.- § 1. Einleitung.- § 2. Das restringierte Dreikörperproblem.- § 3. Hamilton’sche Differentialgleichungen und kanonische Transformationen.- § 4. Die Delaunay’sche kanonische Transformation in der Ebene.- § 5. Die Delaunay’sche kanonische Transformation im Raum.- § 6. Ein Kunstgriff von Poincaré.- § 7. Die Erzeugung kanonischer Transformationen und die partielle Differentialgleichung von Hamilton und Jacobi.- § 8. Störungsrechnung.- § 9. Lineare partielle Differentialgleichungen erster Ordnung mit konstanten Koeffizienten auf dem Torus.- § 10. Quasiperiodische Lösungen des restringierten Dreikörperproblems.- § 11. Geometrische Interpretation mod 2??n.- § 12. Die Newton’sche Methode.- § 13. Der Konvergenzbeweis.- Literatur.- Erratum.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.