Becketti | Introduction to Time Series Using Stata | Buch | 978-1-59718-132-7 | sack.de

Buch, Englisch, 446 Seiten, Format (B × H): 184 mm x 238 mm, Gewicht: 934 g

Becketti

Introduction to Time Series Using Stata


1. Auflage 2013
ISBN: 978-1-59718-132-7
Verlag: Stata Press

Buch, Englisch, 446 Seiten, Format (B × H): 184 mm x 238 mm, Gewicht: 934 g

ISBN: 978-1-59718-132-7
Verlag: Stata Press


Introduction to Time Series Using Stata, Revised Edition provides a step-by-step guide to essential time-series techniques–from the incredibly simple to the quite complex– and, at the same time, demonstrates how these techniques can be applied in the Stata statistical package. The emphasis is on an understanding of the intuition underlying theoretical innovations and an ability to apply them. Real-world examples illustrate the application of each concept as it is introduced, and care is taken to highlight the pitfalls, as well as the power, of each new tool. The Revised Edition has been updated for Stata 16.

Becketti Introduction to Time Series Using Stata jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Just enough Stata Getting startedAll about dataLooking at dataStatisticsOdds and endsMaking a dateTyping dates and date variablesLooking ahead

Just enough statistics Random variables and their momentsHypothesis testsLinear regressionMultiple-equation modelsTime series

Filtering time-series dataPreparing to analyze a time seriesThe four components of a time seriesSome simple filtersAdditional filtersPoints to remember

A first pass at forecastingForecast fundamentalsFilters that forecastPoints to rememberLooking ahead

Autocorrelated disturbancesAutocorrelationRegression models with autocorrelated disturbancesTesting for autocorrelationEstimation with first-order autocorrelated dataEstimating the mortgage rate equation Points to remember

Univariate time-series modelsThe general linear processLag polynomials: Notation or prestidigitations?The ARMA modelStationarity and invertibilityWhat can ARMA models do?Points to rememberLooking ahead

Modeling a real-world time seriesGetting ready to model a time seriesThe Box-Jenkins approachSpecifying an ARMA modelEstimationLooking for trouble: Model diagnostic checkingForecasting with ARIMA modelsComparing forecastsPoints to rememberWhat have we learned so far?Looking ahead

Time-varying volatilityExamples of time-varying volatilityARCH: A model of time-varying volatility Extensions to the ARCH modelPoints to remember

Model of multiple time seriesVector autoregressionsA VAR of the U.S. macroeconomyWho’s on first?SVARsPoints to rememberLooking ahead

Models of nonstationary times seriesTrend and unit rootsTesting for unit rootsCointegration: Looking for a long-term relationshipCointegrating relationships and VECMFrom intuition to VECM: An examplePoints to rememberLooking ahead

Closing observationsMaking sense of it allWhat did we miss?Farewell

References


Sean Becketti is a financial industry veteran with three decades of experience in academics, government, and private industry. Over the last two decades, Becketti has led proprietary research teams at several leading financial firms, responsible for the models underlying the valuation, hedging, and relative value analysis of some of the largest fixed-income portfolios in the world.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.