Belding-Royer / Al Agha / Pujolle | Mobile and Wireless Communications Networks | E-Book | sack.de
E-Book

E-Book, Englisch, Deutsch, Band 162, 509 Seiten, eBook

Reihe: IFIP Advances in Information and Communication Technology

Belding-Royer / Al Agha / Pujolle Mobile and Wireless Communications Networks

IFIP TC6 / WG6.8 Conference on Mobile and Wireless Communication Networks (MWCN 2004) October 25-27, 2004 Paris, France
1. Auflage 2006
ISBN: 978-0-387-23150-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

IFIP TC6 / WG6.8 Conference on Mobile and Wireless Communication Networks (MWCN 2004) October 25-27, 2004 Paris, France

E-Book, Englisch, Deutsch, Band 162, 509 Seiten, eBook

Reihe: IFIP Advances in Information and Communication Technology

ISBN: 978-0-387-23150-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book draws together papers presented at the IFIP/IEEE Sixth Conference on Mobile and Wireless Communications. It focuses on the convergence of mobile wireless networks and the Internet, in particular, integrating stand-alone mobile networks with infrastructure wireless networks to create more robust and accommodating wireless networks.

Written for:

Researchers in network security, QoS and mobile networks

Belding-Royer / Al Agha / Pujolle Mobile and Wireless Communications Networks jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Contents;6
2;UNDERSTANDING THE INTERACTIONS BETWEEN UNICAST AND GROUP COMMUNICATIONS SESSIONS IN AD HOC NETWORKS;9
2.1;1. Introduction;9
2.2;2. Background;10
2.3;3. Issues that may arise when unicast and group communications protocols coexist;13
2.3.1;3.1 Degradations in Packet Delivery Performance;13
2.3.2;3.2 Increased Latency Effects;14
2.3.3;3.3 Increased Control Overhead;14
2.4;4. Simulation Study;15
2.4.1;4.1 Simulation results;15
2.4.2;4.2 The effects of unicast protocol on the performance of group communication protocols;16
2.4.3;4.3 The effects of group communications protocols on the performance of the unicast protocol;17
2.5;5. Conclusions;19
2.6;References;20
3;CROSS- LAYER SIMULATION AND OPTIMIZATION FOR MOBILE AD- HOC NETWORKS;21
3.1;Introduction;21
3.2;1. Related Work;22
3.3;2. IEEE 802.11 MAC Layer Approach;23
3.4;3. Network Layer Approach;26
3.5;4. Expected Result;27
3.6;5. Future Works;28
3.7;6. Simulation Issues;28
3.8;7. Conclusion;29
3.9;References;29
4;IMPROVING TCP PERFORMANCE OVER WIRELESS NETWORKS USING LOSS DIFFERENTIATION ALGORITHMS;31
4.1;1. Introduction;31
4.2;2. TCP NewReno Enhanced with Vegas Loss Predictor;32
4.3;3. Simulation Network Model;33
4.4;4. Accuracy Evaluation;34
4.5;5. TCP Performance over Wireless Links;36
4.6;6. Conclusions;41
4.7;References;41
5;TCP PERFORMANCES IN A HYBRID BROADCAST/ TELECOMMUNICATION SYSTEM;43
5.1;1. Introduction;43
5.2;2. Issues raised by the GPRS return channel;44
5.2.1;2.1 GPRS Bidirectional mode;45
5.2.2;2.2 GPRS Unidirectional mode;45
5.2.3;2.3 GPRS uplink critical throughput;46
5.3;3. Simulation studies of the hybrid network performances;46
5.3.1;3.1 Simulation model of the hybrid network;46
5.3.2;3.2 Asymmetries;47
5.3.3;3.3 Hybrid routing;50
5.4;4. Experimentations;50
5.5;5. Conclusion;52
5.6;References;53
6;HANDOFF NOTIFICATION IN WIRELESS HYBRID NETWORKS;54
6.1;1. Introduction;54
6.2;2. Wireless Hybrid Network;55
6.3;3. Comparing the Route Update strategies;56
6.3.1;3.1 Acknowledged broadcast;57
6.3.2;3.2 Simulation Results;58
6.4;4. Optimization of the mobility notification;59
6.4.1;4.1 Differential Route updates;60
6.4.2;4.2 Nack route;60
6.4.3;4.3 Nack only;61
6.4.4;4.4 Simulation Results;61
6.5;5. Conclusion;64
6.6;References;65
7;SELECTIVE ACTIVE SCANNING FOR FAST HANDOFF IN WLAN USING SENSOR NETWORKS;66
7.1;1. Introduction;66
7.2;2. Layer 2 Handoff Process and Related Works;67
7.3;3. Architecture Design ;70
7.3.1;3.1 Architecture overview;70
7.3.2;3.2 Selective Active Scanning for Fast Handoff;70
7.3.3;3.3 Benefit of the overlay sensor network;74
7.4;4. Evaluation;74
7.5;5. Conclusion;76
7.6;References;77
8;AN ANALYSIS OF MOBILE IPv6 SIGNALING LOAD IN NEXT GENERATION MOBILE NETWORKS;78
8.1;1. INTRODUCTION;78
8.2;2. BINDING UPDATE PROCEDURE;80
8.3;3. BASELINE MOBILE IPv6 SIGNALING LOAD;83
8.4;4. ANALYSIS OF INBAND SIGNALING;86
8.5;5. CONCLUSION;88
8.6;ACKNOWLEDGEMENTS;89
8.7;REFERENCES;89
9;PEER-TO-PEER BASED ARCHITECTURE FOR MOBILITY MANAGEMENT IN WIRELESS NETWORKS;90
9.1;1. INTRODUCTION;90
9.2;2. RELATED WORK;91
9.3;3. PEER-TO-PEER BASED ARCHITECTURE;92
9.3.1;3.1 System Overview;92
9.3.2;3.2 DNS Structure;94
9.3.3;3.3 P2P Structure;95
9.3.4;3.4 Region Structure;96
9.3.5;3.5 System Operations;97
9.4;4. PERFORMANCE EVALUATION;99
9.5;5. CONCLUSION;100
9.6;ACKNOWLEDGMENTS;100
9.7;REFERENCES;101
10;SUPPORTING GROUPWARE IN MOBILE NETWORKS;102
10.1;1. Introduction;102
10.2;2. Related Work;103
10.3;3. Model and Architecture;104
10.3.1;3.1 Network model;104
10.3.2;3.2 Design goals;105
10.3.3;3.3 Architecture;105
10.4;4. MGM Protocols;106
10.4.1;4.1 Exploiting Mobile IP;106
10.4.2;4.2 DNS based solutions;107
10.4.3;4.3 MGMFlood;107
10.4.4;4.4 MGMLeader;108
10.4.5;4.5 Dynamic MGMs;110
10.5;5. MGM Protocol Evaluation;110
10.5.1;5.1 Packet delay evaluation;110
10.5.2;5.2 Control plane evaluation;111
10.6;6. Transport Issues;112
10.7;7. Conclusions;113
10.8;References;113
11;RSM-WISP: ROAMING AND SERVICE MANAGEMENT IN HOTSPOT NETWORKS THROUGH A POLICY BASED MANAGEMENT ARCHITECTURE;114
11.1;1. INTRODUCTION;114
11.2;2. HOTSPOT ACCESS NETWORK MANAGEMENT;115
11.2.1;2.1 Management Objectives;115
11.2.2;2.2 Management Challenges;116
11.3;3. RSM-WISP;117
11.3.1;3.1 Architecture;118
11.3.2;3.2 Policy Specification;119
11.3.3;3.3 Architecture Implementation;122
11.4;4. CONCLUSION;124
11.5;5. REFERENCES;125
12;INTEGRATED RECONFIGURATION MANAGEMENT FOR THE SUPPORT OF END TO END RECONFIGURATION;126
12.1;1. INTRODUCTION;126
12.1.1;1.1 Towards reconfigurability;126
12.1.2;1.2 Related work;127
12.2;2. RECONFIGURATION MANAGEMENT ASPECTS;128
12.3;3. RECONFIGURATION MANAGEMENT PLANE ARCHITECTURE;130
12.3.1;3.1 General architecture;130
12.3.2;3.2 Architectural components;131
12.3.3;3.3 Communication between RMP and external entities;132
12.3.4;3.4 Case studies;133
12.4;4. CONCLUSIONS;135
12.5;ACKNOWLEDGEMENTS;136
12.6;REFERENCES;136
13;REPLICA ALLOCATION CONSIDERING DATA UPDATE INTERVALS IN AD HOC NETWORKS;137
13.1;1. Introduction;137
13.2;2. Related Works;138
13.3;3. Assumptions and Approach;139
13.4;4. Replica Allocation Methods;140
13.4.1;4.1 Replica allocation;140
13.4.2;4.2 Cache invalidation;143
13.5;5. Simulation Experiments;144
13.5.1;5.1 Simulation model;144
13.5.2;5.2 Effects of value;144
13.5.3;5.3 Effects of average update period;146
13.6;6. Conclusions;147
13.7;Acknowledgments;148
13.8;References;148
14;ANOVA-INFORMED DECISION TREES FOR VOICE APPLICATIONS OVER MANETS*;149
14.1;1. Introduction;149
14.2;2. Simulation Analysis of Audio Packet Delays;150
14.3;3. Designed Experiments and ANOVA Analysis;153
14.4;4. Learning Theory and Decision Trees;154
14.5;5. DoE and Learning Methodologies DoE and ANOVA Methodologies;155
14.6;6. DoE and Learning Theory Results and Discussion DoE Results and Discussion;157
14.7;7. Conclusions and Future Work;159
14.8;References;159
15;ROUTE STABILITY TECHNIQUES FOR ENHANCED VIDEO DELIVERY ON MANETS;161
15.1;1. Introduction;161
15.2;2. Related work;162
15.3;3. Route discovery extensions to DSR;163
15.4;4. Effects of route stability on real-time video streams;164
15.5;5. Multipath routing;167
15.6;6. Overall evaluation;170
15.7;7. Summary;171
15.8;References;172
15.9;A NEW SMOOTHING JITTER ALGORITHM FOR VOICE OVER AD HOC NETWORKS;173
16;ON THE COMPLEXITY OF RADIO RESOURCES ALLOCATION IN WCDMA SYSTEMS;185
16.1;1 INTRODUCTION AND SYSTEM MODEL;185
16.2;2 DOWNLINK;187
16.3;3 UPLINK;191
16.4;4 CONCLUDING REMARKS;195
16.5;REFERENCES;196
17;OPTIMIZATION OF PILOT POWER FOR SERVICE COVERAGE AND SMOOTH HANDOVER IN WCDMA NETWORKS;197
17.1;1. Introduction;197
17.2;2. System Model;198
17.2.1;2.1 Preliminaries;198
17.2.2;2.2 Service Constraints;199
17.3;3. Problem Definition;201
17.4;4. Two Ad Hoc Solutions;201
17.5;5. Mathematical Formulations;202
17.5.1;5.1 A Cell- bin Formulation;202
17.5.2;5.2 A Refined Formulation;202
17.6;6. A Lagrangean Heuristic;203
17.7;7. Numerical Study;204
17.8;8. Conclusions;206
17.9;Acknowledgments;207
17.10;References;208
18;AN ALTERNATIVE METRIC FOR CHANNEL ESTIMATION WITH APPLICATIONS IN BLUETOOTH SCHEDULING;209
18.1;1. INTRODUCTION;209
18.2;2. RELATED WORK ON PICONET SCHEDULING;211
18.3;3. ESTIMATORS FOR THE NAKAGAMI FADING PARAMETER;212
18.4;4. PROPOSED SCHEDULING ALGORITHM;214
18.5;5. SIMULATION RESULTS;215
18.6;6. CONCLUDING REMARKS;218
18.7;7. REFERENCES;218
19;DISTRIBUTED PAIRWISE KEY GENERATION USING SHARED POLYNOMIALS FOR WIRELESS AD HOC NETWORKS;220
19.1;1. INTRODUCTION;220
19.2;2. BACKGROUND;222
19.2.1;2.1 Bivariate polynomial- based key pre- distribution;222
19.2.2;2.2 Threshold secret sharing;223
19.3;3. PROPOSED DISTRIBUTED KEY GENERATION SCHEME;223
19.4;4. PERFORMANCE EVALUATION;226
19.5;5. CONCLUSION;230
19.6;ACKNOWLEDGEMENTS;230
20;COLLABORATION ENFORCEMENT AND ADAPTIVE DATA REDIRECTION IN MOBILE AD HOC NETWORKS USING ONLY FIRSTHAND EXPERIENCE;232
20.1;1. INTRODUCTION;233
20.2;2. RELATED WORK;234
20.3;3. THE EXPERIENCE-BASED APPROACH;235
20.3.1;3.1 Node Configurations;235
20.3.2;3.2 Selfish and Malicious Behaviors Considered;236
20.3.3;3.3 Detection and Punishment of Selfishness and Malice in Data Forwarding;236
20.3.4;3.4 Dynamic Redirection;238
20.4;4. EXPERIMENTAL STUDY;240
20.5;5. CONCLUDING REMARKS;242
21;A SIMPLE PRIVACY EXTENSION FOR MOBILE IPV6;244
21.1;1. Introduction;244
21.2;2. Problem Statement;245
21.3;3. Some possible solutions;247
21.4;4. Our Proposal;248
21.4.1;4.1 Temporary Mobile Identifier ( TMI);248
21.4.2;4.2 Protocol description;250
21.5;5. Privacy with Hierarchical Mobile IPv6;252
21.6;6. Conclusions;253
21.7;References;254
22;A TRUST- BASED ROUTING PROTOCOL FOR AD HOC NETWORKS;255
22.1;1. Introduction;255
22.2;2. Related work;256
22.3;3. TRP protocol;257
22.4;4. Performance evaluation;263
22.5;5. Residual vulnerability;265
22.6;6. Conclusion and future work;265
22.7;References;266
23;SHORT- TERM FAIRNESS OF 802.11 NETWORKS WITH SEVERAL HOSTS;267
23.1;1. Introduction;267
23.2;2. Related work;268
23.3;3. Fairness;269
23.3.1;3.1 Number of inter- transmissions;270
23.3.2;3.2 Sliding window method with the Jain fairness index;272
23.4;4. Experimental results;272
23.4.1;4.1 Number of inter- transmissions;273
23.4.2;4.2 Sliding window method with Jain fairness index;275
23.4.3;4.3 Delay;276
23.5;5. Conclusion;277
23.6;References;278
24;RAAR: A RELAY-BASED ADAPTIVE AUTO RATE PROTOCOL FOR MULTI- RATE AND MULTI-RANGE INFRASTRUCTURE WIRELESS LANS*;279
24.1;1. Introduction;279
24.2;2. Relay-Based Adaptive Auto Rate Control protocol (RAAR);281
24.3;3. Throughputs of IEEE 802.11 MAC, RAAR and D-RAAR;284
24.4;4. Conclusion;289
24.5;References;289
25;A NON-TOKEN-BASED-DISTRIBUTED MUTUAL EXCLUSION ALGORITHM FOR SINGLE-HOP MOBILE AD HOC NETWORKS;291
25.1;1. Introduction;291
25.1.1;1.1 Related Works;292
25.1.2;1.2 Our contribution;292
25.2;2. Basic definitions;293
25.3;3. A single-hop mutual exclusion algorithm;294
25.3.1;3.1 Processing an example;294
25.3.2;3.2 The Algorithm;296
25.3.3;3.3 The use of a counter in each station;297
25.3.4;3.4 Evaluation of the number of broadcast rounds necessary for n stations to enter the same CS;298
25.4;4. Experimental results;300
25.5;5. Concluding remarks;301
25.6;References;301
26;THE RECEIVER’S DILEMMA;303
26.1;1. Introduction;303
26.2;2. A Fundamental MANET Problem;304
26.3;3. Some Strategies to Deal with Fading;308
26.4;4. Simulation Analysis;311
26.5;5. Summary and Conclusions;312
26.6;Notes;314
26.7;References;314
27;THEORETICAL CAPACITY OF MULTI-HOP WIRELESS AD HOC NETWORKS;315
27.1;1. Introduction;315
27.2;2. Analysis of Network Saturation Capacity;317
27.2.1;2.1 Boundary Conditions;317
27.2.2;2.2 Discussion;320
27.3;3. Analysis of Maximum Instantaneous Capacity;320
27.3.1;3.1 Maximum Number of Simultaneously Active Links;320
27.3.2;3.2 The Bottleneck Aggregate Link Set;323
27.3.3;3.3 Discussion;324
27.4;4. Conclusions;326
28;HOW TO DISCOVER OPTIMAL ROUTES IN WIRELESS MULTIHOP NETWORKS;327
28.1;1. Introduction;327
28.2;2. Shortest Path Algorithms & Routing Metrics;328
28.3;3. Existing Distributed Algorithms for Optimal Routing Ad Hoc Networks;329
28.4;4. A Distributed Version of Dijkstra’s Shortest Path Algorithm;330
28.4.1;4.1 Key Concepts & Basic Algorithm;331
28.4.2;4.2 Mapping Metric Values to;332
28.5;5. Implementational Aspects;333
28.5.1;5.1 Differential Delay Mapping;334
28.5.2;5.2 Local Delay Mapping;335
28.6;6. Conclusions & Further Work;337
28.7;References;338
29;ASYMPTOTIC PHEROMONE BEHAVIOR IN SWARM INTELLIGENT MANETS;339
29.1;1. Introduction;339
29.1.1;1.1 Previous Work;340
29.1.2;1.2 Structure of Paper;340
29.2;2. Termite Routing for MANETs;341
29.2.1;2.1 A Short Introduction to Ad-Hoc Networks;341
29.2.2;2.2 Termite;341
29.3;3. The Model;343
29.4;4. Pheromone Update Analysis;343
29.4.1;4.1 Single Link Pheromone;344
29.4.2;4.2 Two Link Pheromone;345
29.5;5. Analysis;348
29.6;6. Conclusion;349
29.7;References;350
30;RANDOMIZED ROUTING ALGORITHMS;351
30.1;Introduction;351
30.2;1.1 Definitions of Routing Algorithms;353
30.3;1.2 Empirical results;356
30.3.1;1.2.1 Simulation Environment;356
30.3.2;1.2.2 Discussion of Results;357
30.4;1.3 Summary;359
30.5;Acknowledgments;360
30.6;References;360
31;RBR: REFINEMENT- BASED ROUTE MAINTENANCE PROTOCOL IN WIRELESS AD HOC NETWORKS;362
31.1;1. Introduction;362
31.2;2. Passive Probe Route Redirection;364
31.3;3. Active Probe Route Redirection;368
31.4;4. Performance Evaluations;369
31.5;5. Conclusion;372
31.6;References;372
32;ENABLING ENERGY DEMANDRESPONSE WITH VEHICULAR MESH NETWORKS;374
32.1;1. INTRODUCTION;374
32.2;2. VMESH DESIGN RATIONALE FOR DEMAND RESPONSE;376
32.3;3. VMESH ARCHITECTURE;377
32.4;4. ROUTING IN VMESH;380
32.5;5. PRELIMINARY RESULTS;382
32.6;6. CONCLUSION AND FUTURE WORK;384
32.7;References;385
33;CONTEXT-AWARE INTER-NETWORKING FOR WIRELESS NETWORKS;386
33.1;1. Introduction;386
33.2;2. Network model: the cell approach;388
33.3;3. Heterogeneous merging: a smooth approach;389
33.3.1;3.1 The case of heterogeneous cell interoperability;390
33.3.2;3.2 Addressing heterogeneous cell interoperability;390
33.4;4. Design and mechanisms;391
33.4.1;4.1 The NRPDP Protocol;391
33.4.2;4.2 The Routing Translator Daemon;392
33.5;5. Application: AODV ( DSR, OLSR);393
33.5.1;5.1 AODV DSR;394
33.5.2;5.2 AODV OLSR;395
33.6;6. Conclusion;396
33.7;References;397
34;PERFORMANCE IMPACT OF MOBILITY IN AN EMULATED IP- BASED MULTIHOP RADIO ACCESS NETWORK;398
34.1;1. Introduction;398
34.2;2. Description of the Testbed;399
34.3;3. Mobility Models;400
34.3.1;3.1 Random Waypoint Model;401
34.3.2;3.2 Random Direction Model;402
34.4;4. Performance Evaluation;402
34.4.1;4.1 Setup;402
34.4.2;4.2 Movement Parameters;403
34.4.3;4.3 Results and Interpretation;405
34.5;5. Related Work;407
34.6;6. Conclusions and Further Work;407
34.7;Notes;408
34.8;References;408
35;Broadcast Services and Topology Control in Ad-Hoc Networks;410
35.1;1 Introduction;410
35.2;2 MAC Design and Broadcast services for Ad Hoc Networks;411
35.3;3 Topology Control in Ad Hoc Networks;413
35.4;4 The ADHOC-MAC protocol;413
35.4.1;4.1 RR-ALOHA;413
35.4.2;4.2 Multi-Hop Broadcast;415
35.4.3;4.3 Topology Control in ADHOC MAC;415
35.5;5 Performance Evaluation;416
35.5.1;5.1 Single Hop Broadcast Efficiency;417
35.5.2;5.2 Multi-Hop Broadcast efficiency;418
35.5.3;5.3 Topology Control Algorithm Efficiency;418
35.6;6 Conclusions;420
35.7;References;420
36;SPACE AND TIME CURVATURE IN INFORMATION PROPAGATION IN MASSIVELY DENSE AD HOC NETWORKS;422
36.1;1. Introduction;422
36.2;2. Quantitative results on time slotted networks Quantification of the problem;424
36.3;3. Massively dense networks;427
36.4;4. Introduction of time component;429
36.5;5. Conclusion and perspectives;433
36.6;References;434
37;CLUSTER-BASED LOCATION-SERVICES FOR SCALABLE AD HOC NETWORK ROUTING;435
37.1;1. INTRODUCTION;435
37.2;2. RELATED WORK AND OUR MOTIVATION;437
37.2.1;2.1 Basic Principles of Location-Based Routing;438
37.2.2;2.2 Related Work on Location-service;438
37.2.3;2.3 Related Work on Clustering;439
37.2.4;2.4 Our Motivation;440
37.3;3. HOME-ZONE BASED HIERARCHICAL LOCATION MANAGEMENT;440
37.3.1;3.1 Associativity-based Stable Clustering;440
37.3.2;3.2 Homezone-based Hierarchical Location-Service;443
37.4;4. EVALUATION THROUGH SIMULATION;446
37.5;5. CONCLUSIONS AND FUTURE WORK;449
37.6;ACKNOWLEDGEMENT;449
37.7;REFERENCES;449
38;ON SELECTING NODES TO IMPROVE ESTIMATED POSITIONS;451
38.1;1. Introduction;451
38.2;2. Assumptions and definitions;453
38.3;3. Anchors selection;454
38.3.1;3.1 Simple convex hull;455
38.3.2;3.2 Advanced hull;455
38.4;4. Simulation Results;456
38.4.1;4.1 Evaluation of the hull selection;456
38.5;5. Conclusion;461
38.6;References;461
39;ENERGY-EFFICIENT MULTIMEDIA COMMUNICATIONS IN LOSSY MULTI- HOP WIRELESS NETWORKS;463
39.1;1. Introduction;463
39.2;2. Energy Management in Multi-Hop Wireless Networks;464
39.2.1;2.1 Energy-Aware Communication;464
39.2.2;2.2 Supporting End-to-End Communication with Hop-by-Hop Mechanisms;465
39.3;3. Protocol Effectiveness and Energy Efficiency;466
39.4;4. Application-Aware Link Layer Protocol;466
39.4.1;4.1 Transport Protocol Support;467
39.4.2;4.2 Intelligent Dropping Mechanism;467
39.4.3;4.3 The Retransmission Mechanism;468
39.5;5. Evaluation;469
39.5.1;5.1 Effects of Error Rate on Performance;470
39.5.2;5.2 Effects of Mobility on Performance;471
39.6;6. Conclusions;472
39.7;References;473
40;ANALYZING THE ENERGY CONSUMPTION OF IEEE 802.11 AD HOC NETWORKS;475
40.1;1. Introduction;475
40.2;2. Energy Consumption of the Nodes;476
40.3;3. Power Saving Techniques;479
40.4;4. Conclusions;485
40.5;References;486
41;ENERGY-EFFICIENT RELIABLE PATHS FOR ON-DEMAND ROUTING PROTOCOLS;487
41.1;1. Introduction;487
41.2;2. Related Work;487
41.3;3. Minimum Energy Reliable Paths;488
41.3.1;3.1 Hop-by-Hop Retransmissions (HHR):;488
41.3.2;3.2 End-to-End Retransmissions (EER):;489
41.4;4. Estimating Link Error Rate;489
41.4.1;4.1 BER using Radio Signal-to-Noise Ratio;489
41.4.2;4.2 BER using Link Layer Probes;490
41.4.3;4.3 BER Estimation for Variable Power Case;490
41.5;5. AODV and its Proposed Modifications;491
41.5.1;5.1 AODV Messages and Structures;491
41.5.2;5.2 Route Discovery;491
41.6;6. Simulation Experiments and Performance Evaluation;493
41.6.1;6.1 Network Topology and Link Error Modeling;493
41.6.2;6.2 Metrics;495
41.6.3;6.3 Static Grid Topologies;495
41.6.4;6.4 Static Random Topologies;497
41.6.5;6.5 Mobile Topologies;497
41.7;7. Conclusions;497
42;MINIMUM POWER SYMMETRIC CONNECTIVITY PROBLEM IN WIRELESS NETWORKS: A NEW APPROACH;499
42.1;1. Introduction;499
42.2;2. Problem description;501
42.3;3. An integer programming formulation;502
42.3.1;3.1 Valid inequalities;503
42.4;4. Preprocessing procedure;505
42.5;5. The iterative exact algorithm;506
42.6;6. Computational results;506
42.6.1;6.1 Preprocessing procedure;507
42.6.2;6.2 IEX algorithm;507
42.7;7. Conclusion;508
42.8;Acknowledgments;508
42.9;References;509

Understanding the Interactions between Unicast and Group Communications Sessions in Ad Hoc Networks.- Cross-Layer Simulation and Optimization for Mobile Ad-Hoc Networks.- Improving TCP Performance over Wireless Networks Using Loss Differentiation Algorithms.- TCP Performances in a Hybrid Broadcast/Telecommunication System.- Handoff Notification in Wireless Hybrid Networks.- Selective Active Scanning for Fast Handoff in WLAN using Sensor Networks.- An Analysis of Mobile IPv6 Signaling Load in Next Generation Mobile Networks.- Peer-to-Peer Based Architecture for Mobility Management in Wireless Networks.- Supporting Groupware in Mobile Networks.- RSM-WISP: Roaming and Service Management in Hotspot Networks Through a Policy Based Management Architecture.- Integrated Reconfiguration Management for the Support of End to End Reconfiguration.- Replica Allocation Considering Data Update Intervals in Ad Hoc Networks.- Anova-Informed Decision Trees for Voice Applications over Manets.- Route Stability Techniques for Enhanced Video Delivery on Manets.- A New Smoothing Jitter Algorithm for Voice over Ad Hoc Networks.- On the Complexity of Radio Resources Allocation in WCDMA Systems.- Optimization of Pilot Power for Service Coverage and Smooth Handover in WCDMA Networks.- An Alternative Metric for Channel Estimation with Applications in Bluetooth Scheduling.- Distributed Pairwise Key Generation Using Shared Polynomials for Wireless Ad Hoc Networks.- Collaboration Enforcement and Adaptive Data Redirection in Mobile Ad Hoc Networks Using Only First-Hand Experience.- A Simple Privacy Extension for Mobile IPv6.- A Trust-Based Routing Protocol for Ad Hoc Networks.- Short-Term Fairness of 802.11 Networks with Several Hosts.- RAAR: A Relay-Based Adaptive Auto Rate Protocol for Multi-Rate and Multi-Range Infrastructure Wireless LANs.- A Non-Token-Based-Distributed Mutual Exclusion Algorithm for Single-Hop Mobile Ad Hoc Networks.- The Receiver’s Dilemma.- Theoretical Capacity of Multi-HopWireless Ad Hoc Networks.- How to Discover Optimal Routes in Wireless Multihop Networks.- Asymptotic Pheromone Behavior in Swarm Intelligent MANETs.- Randomized Routing Algorithms in Mobile Ad Hoc Networks.- RBR: Refinement-Based Route Maintenance Protocol in Wireless Ad Hoc Networks.- Enabling Energy Demand Response with Vehicular Mesh Networks.- Context-Aware Inter-Networking for Wireless Networks.- Performance Impact of Mobility in an Emulated IP-based Multihop Radio Access Network.- Broadcast Services and Topology Control in Ad-Hoc Networks.- Space and Time Curvature in Information Propagation in Massively Dense Ad Hoc Networks.- Cluster-based Location-Services for Scalable Ad Hoc Network Routing.- On Selecting Nodes to Improve Estimated Positions.- Energy-Efficient Multimedia Communications in Lossy Multi-hop Wireless Networks.- Analyzing the Energy Consumption of IEEE 802.11 Ad Hoc Networks.- Energy-Efficient Reliable Paths for On-Demand Routing Protocols.- Minimum Power Symmetric Connectivity Problem in Wireless Networks: A New Approach.


AN ALTERNATIVE METRIC FOR CHANNEL ESTIMATION WITH APPLICATIONS IN BLUETOOTH SCHEDULING (S. 203-204)

João H. Kleinschmidt, Marcelo E. Pellenz and Luiz A. P. Lima Jr.
Graduate Program in Computer Science, Pontifical Catholic University of Paraná, Curitiba – PR, Brazil. E-mail:{joaohk, marcelo, laplima}@ppgia.pucpr.br

Abstract: Once Wireless Local Networks (WLAN) and Bluetooth devices share the same frequency band (ISM) there is a potential risk of interference if they are supposed to operate close to each other. Additionally, the signal fading effects on mobile Bluetooth networks may deeply affect the overall performance. That is why the use of strategies that minimize transmission on channels with great interference or severe fading is so important. This paper proposes and investigates the use of parameter m of the Nakagami distribution, as the channel estimation metric. We observed that parameter m may provide faster estimates on the channel condition than the bit error rate metric. This metric is applied in a new scheduling algorithm for Bluetooth piconets. Simulation results showing the performance of the algorithm for different traffic conditions are eventually presented. Bluetooth; wireless networks; Nakagami-m fading; scheduling. Key words:

1. INTRODUCTION

Bluetooth is emerging as an important standard1 for short range and lowpower wireless communications. It operates in the 2.4 GHz ISM (Industrial, Scientific and Medical) band employing a frequency-hopping spread spectrum technique. The transmission rate is up to 1 Mbps, using GFSK (Gaussian Frequency Shift Keying) modulation. The Bluetooth MAC protocol is designed to facilitate the construction of ad hoc networks. The devices can communicate with each other forming a network with up to eight nodes, called piconet. Within a piconet, one device is assigned as a master node and the others devices act as slave nodes. Devices in different piconets can communicate using a structure called scatternet. The channel is divided in time slots of A time-division duplex (TDD) scheme is used for full-duplex operation. For data transmission Bluetooth employs seven asynchronous packet types.

Each packet may occupy 1, 3 or 5 time slots. The throughput of Bluetooth links using asynchronous packets was investigated2 for the additive white Gaussian noise (AWGN) channel and for the Rayleigh fading channel. In other work3, we extended the results presented by Valenti2 looking into the performance of Bluetooth links in Nakagami-m fading channels. The sharing of the same frequency band between WLAN and Bluetooth devices may cause interference, if they are operating close to each other. Additionally, may occur mutual interference between different Bluetooth piconets operating in the same area. In Bluetooth networks with node mobility, like in sensor networks applications, the fading effects in the radio signal may significantly decrease the link performance. The use of strategies that minimize the transmission in channels with great interference or severe fading, may substantially improve the piconet performance. Extensive empirical measurements have confirmed the usefulness of the Nakagami-m distribution for modeling radio links13,14. The Nakagami-m distribution4 allows a better characterization of real channels because it spans, via the parameter m, the widest range of multipath fading distributions. For m=1 we get the Rayleigh distribution.

Using m<1 or m>1 we obtain fading intensities more and less severe than Rayleigh, respectively. This work proposes the use of fading parameter m as an alternative channel quality metric. This parameter can be estimated based on the received symbols. In a mobile wireless network, when a node position changes from line-of-sight to non-line-of-sight, for example, the impact in the signal propagation characteristic may be interpreted as a change in the parameter m. This model is interesting when Bluetooth devices are applied to ad hoc sensor networks. Power class one Bluetooth devices can cover ranges up to 100 meters, allowing the formation of large area piconets or scatternets. We also propose a new scheduling algorithm for Bluetooth piconets, which uses the channel quality information in the scheduling policy.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.