Bennour / Bouridane / Almaadeed | Intelligent Systems and Pattern Recognition | E-Book | sack.de
E-Book

E-Book, Englisch, Band 2305, 350 Seiten, eBook

Reihe: Communications in Computer and Information Science

Bennour / Bouridane / Almaadeed Intelligent Systems and Pattern Recognition

4th International Conference, ISPR 2024, Istanbul, Turkey, June 26-28, 2024, Revised Selected Papers, Part III
Erscheinungsjahr 2025
ISBN: 978-3-031-82156-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

4th International Conference, ISPR 2024, Istanbul, Turkey, June 26-28, 2024, Revised Selected Papers, Part III

E-Book, Englisch, Band 2305, 350 Seiten, eBook

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-82156-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This Three-volume set CCIS 2303-2305 constitutes the proceedings of the 4th International Conference on Intelligent Systems and Pattern Recognition, ISPR 2024, held in Istanbul, Turkey, in June 26–28, 2024. The 77 full papers presented were thoroughly reviewed and selected from the 210 submissions. The conference provided an interdisciplinary forum for the exchange of innovative advancements in the fields of artificial intelligence and pattern recognition.
Bennour / Bouridane / Almaadeed Intelligent Systems and Pattern Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- A Bone Fracture Detection Using CNN Model..- Balancing Class Distribution in Microarray Analysis Using GenAI..- Tunisian Sign Language Recognition and Translation Using Deep Learning..- Beyond Spatial: A Wavelet Fusion-based Deep Learning CAD for Skin Cancer Diagnosis..- Integrating Machine Learning and Deep Learning Techniques for Enhanced Historical Script Classification..- Efficiency Meets Resilience: Accelerating Object Detection in Embedded Environments through Compressive Sensing..- PMoET: Going Wider than Deeper using the Parallel Mixture-of-Experts Transformer for 3D Hand Gesture Recognition..- Enhancing Forest Fire Classification with Feature Selection and Machine Learning based on PRISMA Hyperspectral Data..- Semantic Segmentation of UAV Images using SegFormer..- Handcrafted and Deep features for Synthetic data generation in Offline Handwritten Signature Verification..- Refining U-Net Architecture through Genetic Algorithms for Improved Skin Lesion Image Segmentation..- An RNN-LSTM Approach for Algerian Accent Identification..- Boosting Methods for Predicting Cyanobacteria's Potential Toxicity in Water Dams..- Cross-Organ Investigation of Tumor Histological Features Similarities Using Transfer Learning: A Case Study on Breast and Colorectal Tumors..- Behavior-Based Insider Threat Detection Using a Deep Neural Network..- Holistic Ontology Alignment using ontologies Embeddings..- Learning Different Separations in Branch and Cut:A Survey..- Cancer Classification in Breast Imaging via Enhanced CNN Deep Learning Architecture..- X-Ray Insights: A Siamese with CNN and Spatial Attention Network For Innovative Person Identification..- Hybrid Wiener Filter and Sharpening Filter for Image De-Blurring..- Feature Extraction and Dimensionality Reduction to Evaluate Decision Tree Ensembles for Diabetic Retinopathy Detection..- Artificial Intelligence-based on Automatic Detection of Diabetic Eye Diseases : A Systematic Review..- Automated Breast Cancer Detection: A Review..- One-Class Convolutional Neural Network for Arabic Mispronunciation Detection..- Enhancing Writer Retrieval in Handwritten Documents through Fusion of Deep Features and Multi-Oriented Histograms..- MCDPS: Enhancing Clinical Decision Support for Multiple Chronic Disease Prediction Systems Using Ensemble Machine Learning Approaches.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.