Bennour / Bouridane / Edirisinghe | Intelligent Systems and Pattern Recognition | Buch | 978-3-031-82152-3 | sack.de

Buch, Englisch, 362 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 575 g

Reihe: Communications in Computer and Information Science

Bennour / Bouridane / Edirisinghe

Intelligent Systems and Pattern Recognition

4th International Conference, ISPR 2024, Istanbul, Turkey, June 26-28, 2024, Revised Selected Papers, Part II
Erscheinungsjahr 2025
ISBN: 978-3-031-82152-3
Verlag: Springer Nature Switzerland

4th International Conference, ISPR 2024, Istanbul, Turkey, June 26-28, 2024, Revised Selected Papers, Part II

Buch, Englisch, 362 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 575 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-82152-3
Verlag: Springer Nature Switzerland


This Three-volume set CCIS 2303-2305 constitutes the proceedings of the 4th International Conference on Intelligent Systems and Pattern Recognition, ISPR 2024, held in Istanbul, Turkey, in June 26–28, 2024.

The 77 full papers presented were thoroughly reviewed and selected from the 210 submissions. The conference provided an interdisciplinary forum for the exchange of innovative advancements in the fields of artificial intelligence and pattern recognition.

Bennour / Bouridane / Edirisinghe Intelligent Systems and Pattern Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Deep Learning Approach for Tunisian Postal Address Segmentation.

.- Leveraging DQN-Based Recommender Systems for E-Commerce in Smart Cities.

.- Empowering Healthcare with Deep Learning: An Application for Early Detection of Skin Cancer.

.- GAN-Enhanced Deep Learning Approach for Forecasting the Potentially Toxic Cyanobacteria in Dams.

.- Adaboost optimized by sinh cosh algorithm for prediction of software defects.

.- Prediction of Chronic Diseases using Parallel 1D-CNN Feature Extraction and SVM Classification based on SMOTE.

.- Interpretable Ensemble Learning Model For Enabling An IDS To Detect DNS Attacks.

.- An Improved Static Analysis Approach for Malware Detection by Optimizing Feature Extraction Combining Different ML Algorithms.

.- Deep learning algorithms for colon cancer detection: A comparative study with traditional machine learning methods.

.- Diabetic Retinopathy Grade Assessment using ResNetRS.

.- Novel hybrid feature selection method and globalization technique for text classification.

.- Applying Machine Learning Approaches with Integrated Internet of Things for Water Management System.

.- Implementation of a comparative study of convolutional neural network architectures for image blind noise elimination.

.- Structuring and Text Summarization of Indian Legal Documents.

.- Photovoltaic Cell Defect Classification Using Attention U-Net Image Segmentation.

.- Ulcerative Colitis Image Classification using Federated Deep Learning.

.- Accelerating Traditional Object Detection Methods on Sophisticated Embedded Systems.

.- Detecting Raspberry Ripeness Across Different Growth Stages Using YOLOv8.

.- Air Quality Forecasting in Presence Missing Data.

.- Image Encryption in Frequency Domain using Hybrid Chaotic Maps, Hashing, and Lifting Wavelet Transform.

.- Detection and parameter estimation of an inflatable boat.

.- Self-Attention Siamese Network for Unsupervised Few-Shot Learning Tasks.

.- Comparative study using ensemble methods and sampling techniques for imbalanced diabetes data.

.- Advanced Deep Learning Techniques for Accurate Detection of Wheat Leaf Diseases.

.- Enhancing Tomato Crop Health: Leveraging Modified InceptionResNetV2 for Disease Detection.

.- BA-GAN: A Boundary-Aware Generative Adversarial Network for Document Restoration.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.