Bergeron | The Spectrum of Hyperbolic Surfaces | Buch | 978-3-319-27664-9 | sack.de

Buch, Englisch, 370 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 657 g

Reihe: Universitext

Bergeron

The Spectrum of Hyperbolic Surfaces


1. Auflage 2016
ISBN: 978-3-319-27664-9
Verlag: Springer International Publishing

Buch, Englisch, 370 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 657 g

Reihe: Universitext

ISBN: 978-3-319-27664-9
Verlag: Springer International Publishing


This text is an introduction to the spectral theory of the Laplacian on compact or finite area hyperbolic surfaces. For some of these surfaces, called “arithmetic hyperbolic surfaces”, the eigenfunctions are of arithmetic nature, and one may use analytic tools as well as powerful methods in number theory to study them.

After an introduction to the hyperbolic geometry of surfaces, with a special emphasis on those of arithmetic type, and then an introduction to spectral analytic methods on the Laplace operator on these surfaces, the author develops the analogy between geometry (closed geodesics) and arithmetic (prime numbers) in proving the Selberg trace formula. Along with important number theoretic applications, the author exhibits applications of these tools to the spectral statistics of the Laplacian and the quantum unique ergodicity property. The latter refers to the arithmetic quantum unique ergodicity theorem, recently proved by Elon Lindenstrauss.

The fruit of several graduate level courses at Orsay and Jussieu, The Spectrum of Hyperbolic Surfaces allows the reader to review an array of classical results and then to be led towards very active areas in modern mathematics.

Bergeron The Spectrum of Hyperbolic Surfaces jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


Preface.- Introduction.- Arithmetic Hyperbolic Surfaces.- Spectral Decomposition.- Maass Forms.- The Trace Formula.- Multiplicity of lambda1 and the Selberg Conjecture.- L-Functions and the Selberg Conjecture.- Jacquet-Langlands Correspondence.- Arithmetic Quantum Unique Ergodicity.- Appendices.- References.- Index of notation.- Index.- Index of names.


Nicolas Bergeron is a Professor at Université Pierre et Marie Curie in Paris. His research interests are in geometry and automorphic forms, in particular the topology and spectral geometry of locally symmetric spaces.  



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.