Buch, Englisch, 347 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 569 g
Reihe: Springer Texts in Statistics
Buch, Englisch, 347 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 569 g
Reihe: Springer Texts in Statistics
ISBN: 978-3-319-82969-2
Verlag: Springer International Publishing
This fully revised new edition includes important developments over the past 8 years. Consistent with modern data analytics, it emphasizes that a proper statistical learning data analysis derives from sound data collection, intelligent data management, appropriate statistical procedures, and an accessible interpretation of results. As in the first edition, a unifying theme is supervised learning that can be treated as a form of regression analysis. Key concepts and procedures are illustrated with real applications, especially those with practical implications.
The material is written for upper undergraduate level and graduate students in the social and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems. The author uses this book in a course on modern regression for the social, behavioral, and biological sciences. All of the analyses included are done in R with code routinely provided.
Zielgruppe
Upper undergraduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Sozialwissenschaften Soziologie | Soziale Arbeit Soziologie Allgemein Empirische Sozialforschung, Statistik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Epidemiologie, Medizinische Statistik
- Sozialwissenschaften Psychologie Psychologie / Allgemeines & Theorie Psychologische Forschungsmethoden
Weitere Infos & Material
Statistical Learning as a Regression Problem.- Splines, Smoothers, and Kernels.- Classification and Regression Trees (CART).- Bagging.- Random Forests.- Boosting.- Support Vector Machines.- Some Other Procedures Briefly.- Broader Implications and a Bit of Craft Lore.