Bertram | The Geometry of Jordan and Lie Structures | Buch | 978-3-540-41426-1 | sack.de

Buch, Englisch, Band 1754, 274 Seiten, Format (B × H): 155 mm x 233 mm, Gewicht: 443 g

Reihe: Lecture Notes in Mathematics

Bertram

The Geometry of Jordan and Lie Structures


2000
ISBN: 978-3-540-41426-1
Verlag: Springer Berlin Heidelberg

Buch, Englisch, Band 1754, 274 Seiten, Format (B × H): 155 mm x 233 mm, Gewicht: 443 g

Reihe: Lecture Notes in Mathematics

ISBN: 978-3-540-41426-1
Verlag: Springer Berlin Heidelberg


0. In this work of we the Lie- and Jordan on an study interplay theory and ona level.Weintendtocontinue ittoa algebraic geometric systematicstudy ofthe role Jordan inharmonic In the of theoryplays analysis. fact, applications the of Jordan to theharmonic on cones theory algebras analysis symmetric (cf. of the wereatthe theauthor'sworkinthisarea. Then monograph[FK94]) origin Jordan in of turned the causal algebras up study many symmetric (see spaces Section and clearthat all soon itbecame XI.3), "generically" symmetric spaces have Since a relation toJordan Jordan does not significant theory. theory (yet) to the standard tools inharmonic the is text belong analysis, present designed to self-contained introduction to Jordan for readers a provide theory having basic Lie and Our ofview some on knowledge groups symmetric spaces. point is introduce first the relevant structures geometric: throughout we geometric anddeducefromtheir identities fortheassociated propertiesalgebraic algebraic structures. Thus our differs from related ones presentation (cf. e.g. [FK94], the fact thatwe do not take an axiomatic definition ofsome [Lo77], [Sa80]) by Jordan structureasour Let us nowanoverviewof algebraic startingpoint. give the See alsothe introductions the contents. at ofeach given beginning chapter. 0.1. Lie and Jordan Ifwe the associative algebras algebras. decompose of the matrix in its and product algebra M(n,R) symmetric skew-symmetric parts, - XY YX XY YX + XY= + (0.1) 2 2 then second the term leads to the Lie with algebra gf(n,R) product [X,Y] XY- and first the termleadstotheJordan M with YX, algebra (n,R) product - X Y= + (XY YX).

Bertram The Geometry of Jordan and Lie Structures jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


The Jordan-Lie functor.- I: Symmetric spaces and the Lie-functor.- II: Prehomogeneous symmetric spaces and Jordan algebras.- III: The Jordan-Lie functor.- IV: The classical spaces.- V: Non-degenerate spaces.- Conformal group and global theory.- VI: Integration of Jordan structures.- VII: The conformal Lie algebra.- VIII: Conformal group and conformal completion.- IX: Liouville theorem and fundamental theorem.- X: Algebraic structures of symmetric spaces with twist.- XI: Spaces of the first and of the second kind.- XII: Tables.- XIII: Further topics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.