E-Book, Englisch, 312 Seiten, eBook
Bhanu / Kumar Deep Learning for Biometrics
1. Auflage 2017
ISBN: 978-3-319-61657-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 312 Seiten, eBook
Reihe: Advances in Computer Vision and Pattern Recognition
ISBN: 978-3-319-61657-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Part I: Deep Learning for Face Biometrics .- The Functional Neuroanatomy of Face Processing: Insights from Neuroimaging and Implications for Deep Learning.- Real-Time Face Identification via Multi-Convolutional Neural Network and Boosted Hashing Forest.- CMS-RCNN: Contextual Multi-Scale Region-Based CNN for Unconstrained Face Detection.- Part II: Deep Learning for Fingerprint, Fingervein and Iris Recognition .- Latent Fingerprint Image Segmentation Using Deep Neural Networks.- Finger Vein Identification Using Convolutional Neural Network and Supervised Discrete Hashing.- Iris Segmentation Using Fully Convolutional Encoder-Decoder Networks.- Part III: Deep Learning for Soft Biometrics .- Two-Stream CNNs for Gesture-Based Verification and Identification: Learning User Style.- DeepGender2: A Generative Approach Toward Occlusion and Low Resolution Robust Facial Gender Classification via Progressively Trained Attention Shift Convolutional Neural Networks (PTAS-CNN) and Deep Convolutional Generative Adversarial Networks (DCGAN).- Gender Classification from NIR Iris Images Using Deep Learning.- Deep Learning for Tattoo Recognition.- Part IV: Deep Learning for Biometric Security and Protection .- Learning Representations for Cryptographic Hash Based Face Template Protection.- Deep Triplet Embedding Representations for Liveness Detection.