Bianchi / Naldi | Intelligent Systems | Buch | 978-3-031-45391-5 | sack.de

Buch, Englisch, 489 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 762 g

Reihe: Lecture Notes in Computer Science

Bianchi / Naldi

Intelligent Systems

12th Brazilian Conference, BRACIS 2023, Belo Horizonte, Brazil, September 25-29, 2023, Proceedings, Part III
1. Auflage 2023
ISBN: 978-3-031-45391-5
Verlag: Springer Nature Switzerland

12th Brazilian Conference, BRACIS 2023, Belo Horizonte, Brazil, September 25-29, 2023, Proceedings, Part III

Buch, Englisch, 489 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 762 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-45391-5
Verlag: Springer Nature Switzerland


The three-volume set LNAI 14195, 14196, and 14197 constitutes the refereed proceedings of the 12th Brazilian Conference on Intelligent Systems, BRACIS 2023, which took place in Belo Horizonte, Brazil, in September 2023.

The 90 full papers included in the proceedings were carefully reviewed and selected from 242 submissions. They have been organized in topical sections as follows:

Part I: Best papers; resource allocation and planning; rules and feature extraction; AI and education; agent systems; explainability; AI models; 

Part II: Transformer applications; convolutional neural networks; deep learning applications; reinforcement learning and GAN; classification; machine learning analysis;

Part III: Evolutionary algorithms; optimization strategies; computer vision; language and models; graph neural networks; pattern recognition; AI applications. 

Bianchi / Naldi Intelligent Systems jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Multi-objective Genetic Algorithms Applied to the Optimization of Expanded Genetic Codes.- Genetic Algorithms with Optimality Cuts to the Max-Cut Problem.- Assessment of robust multi-objective evolutionary algorithms on robust and noisy environments.- Binary Flying Squirrel Optimizer for Feature Selection.- Fitness Landscape Analysis of TPOT using Local Optima Network.- Optimization Strategies for BERT-based Named Entity Recognition.- FlexCon-CE: A Semi-supervised Method with an Ensemble-based Adaptive Confidence.- Single Image Super-Resolution Based on Capsule Neural Networks.- Development of a Deep Learning Model for the Classification of Mosquito Larvae Images.- A Simple and Low-cost Method for Leaf Surface Dimension Estimation Based on Digital Images.- Crop Row Line Detection with Auxiliary Segmentation Task.- Multiple object tracking in native bee hives: A case study with Jataí in the field.- An Open Source Eye Gaze Tracker system to perform remote user testing evaluations.- Who Killed the Winograd Schema Challenge?Sabiá: Portuguese Large Language Models.- Disambiguation of Universal Dependencies Part-of-Speech Tags of Closed Class Words in Portuguese.- Bete: A Brazilian Portuguese Dataset for Named Entity Recognition and Relation Extraction in the Diabetes Healthcare Domain.- LegalBert-pt: A Pretrained Language Model for the Brazilian Portuguese Legal Domain.- A Framework for Controversial Political Topics Identification using Twitter Data.- Leveraging Sign Language Processing with Formal SignWriting and Deep Learning ArchitecturesA clustering validation index based on semantic description.- Detecting Multiple Epidemic Sources in Network Epidemics using Graph Neural Networks.- Prediction of cancer-related miRNA targets using an integrative heterogeneous Graph Neural Network-based method.- Time series forecasting of COVID-19 cases in Brazil with GNN and mobility networks.- Federated Learning and Mel-spectrograms for Physical Violence Detection in Audio.- Police Report Similarity Search: a case study.- Evaluating Contextualized Embeddings for Topic Modeling in Public Bidding Domain.- A Tool for Measuring Energy Consumption in Data Stream Mining.- Improved Fuzzy Decision System for Energy Bill Reduction in the Context of the Brazilian White Tariff Scenario.- Exploring Artificial Intelligence methods for the automatic measurement of a new biomarker aiming at glaucoma diagnosis.- Investigation of deep Active Self-Learning algorithms applied to named entity recognition.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.