Buch, Englisch, 396 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 787 g
A Systematic Introduction to Image Processing and Computer Vision
Buch, Englisch, 396 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 787 g
ISBN: 978-3-540-27322-6
Verlag: Springer Berlin Heidelberg
This textbook presents a systematic, mathematically rigorous examination of modern signal processing concepts used in computer vision and image analysis. This is the first reference to employ a single concept: direction tensors, to explore single direction, group direction, corners and edges, and motion estimation. Topics include Hilbert spaces, Fourier transform, scale analysis, direction fields, structure tensor, motion tensor, Hough transform, grouping, and segmentation. The book is richly illustrated with 4-color graphics and applications, including biometric person authentication, texture analysis, optical character recognition, motion estimation and tracking.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Angewandte Optik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
Weitere Infos & Material
Human and Computer Vision.- Neuronal Pathways of Vision.- Color.- Linear Tools of Vision.- Discrete Images and Hilbert Spaces.- Continuous Functions and Hilbert Spaces.- Finite Extension or Periodic Functions—Fourier Coefficients.- Fourier Transform—Infinite Extension Functions.- Properties of the Fourier Transform.- Reconstruction and Approximation.- Scales and Frequency Channels.- Vision of Single Direction.- Direction in 2D.- Direction in Curvilinear Coordinates.- Direction in ND, Motion as Direction.- World Geometry by Direction in N Dimensions.- Vision in Multiple Directions.- Group Direction and N-Folded Symmetry.- Grouping, Segmentation, and Region Description.- Reducing the Dimension of Features.- Grouping and Unsupervised Region Segregation.- Region and Boundary Descriptors.- Concluding Remarks.