Binnewies / Glaum / Schmidt | Chemical Vapor Transport Reactions | E-Book | sack.de
E-Book

E-Book, Englisch, 642 Seiten

Binnewies / Glaum / Schmidt Chemical Vapor Transport Reactions


1. Auflage 2012
ISBN: 978-3-11-025465-5
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 642 Seiten

ISBN: 978-3-11-025465-5
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



This comprehensive handbook covers the diverse aspects of chemical vapor transport reactions from basic research to important practical applications. The book begins with an overview of models for chemical vapor transport reactions and then proceeds to treat the specific chemical transport reactions for the elements, halides, oxides, sulfides, selenides, tellurides, pnictides, among others. Aspects of transport from intermetallic phases, the stability of gas particles, thermodynamic data, modeling software and laboratory techniques are also covered. Selected experiments using chemical vapor transport reactions round out the work, making this book a useful reference for researchers and instructors in solid state and inorganic chemistry.
Binnewies / Glaum / Schmidt Chemical Vapor Transport Reactions jetzt bestellen!

Zielgruppe


Chemists in academia and industry, advanced students of chemistry with focus on solid state chemistry

Weitere Infos & Material


1;1 Chemical Vapor Transport Reactions – an Introduction;15
1.1;1.1 Historical Development and Principles;15
1.2;1.2 Experimental;17
1.3;1.3 Thermodynamic Considerations;18
1.4;1.4 Equilibrium Solids in Source and Sink;23
1.5;1.5 Transport Agent;24
1.6;1.6 Overview of Vapor Deposition Methods;27
1.7;Bibliography;30
2;2 Chemical Vapor Transport – Models;31
2.1;2.1 Thermodynamic Basis for Understanding Chemical Vapor Transport Reactions;33
2.2;2.2 Condensed Phases in a Transport Experiment – the Most Simple Case;42
2.3;2.3 Complex, Congruent Transports;45
2.4;2.4 Incongruent Dissolution and Quasi-stationary Transport Behavior;50
2.4.1;2.4.1 Phase Relations Accompanying Incongruent Dissolution of a Solid;50
2.4.2;2.4.2 The Extended Transport Model;53
2.5;2.5 Non-stationary Transport Behavior;74
2.5.1;2.5.1 Chemical Reasons for the Occurrence of Multi-phase Solids;74
2.5.2;2.5.2 The Time Dependence of Chemical Vapor Transport Experiments with Multi-Phase Solids;82
2.5.3;2.5.3 The Model of Co-operative Chemical Vapor Transport;89
2.6;2.6 Diffusion, Stoichiometric Flow, and Transport Rate;92
2.6.1;2.6.1 Steady-state Diffusion;92
2.6.2;2.6.2 One-dimensional Steady-state Diffusion as Rate-determining Step;92
2.6.3;2.6.3 The Use of X for the Calculation of Transport Rates of Complex Transport Systems in Closed Ampoules;95
2.6.4;2.6.4 The Use of Solubility X in Open Transport Systems;97
2.6.5;2.6.5 An Example – Calculation of the Transport Rate for the Nickel/Carbon Monoxide System;98
2.7;2.7 Diffusion Coefficients;101
2.7.1;2.7.1 The Binary Diffusion Coefficient D0;101
2.7.2;2.7.2 D0 in Multi-compound Systems;105
2.8;2.8 Survey of Gas Motion in Ampoules;107
2.8.1;2.8.1 General Remarks;107
2.8.2;2.8.2 Experiments on Gas Motion – Diffusion and Convection in Closed Ampoules;109
2.8.3;2.8.3 Experiments Concerning Thermal Convection;113
2.9;2.9 Chemical Kinetics of Heterogeneous Reactions;117
2.9.1;2.9.1 Reaction Behavior at an Atomic Level;117
2.9.2;2.9.2 Kinetic Influences Observed by Transport Experiments;119
2.9.3;2.9.3 Some Observations on Catalytic Effects;120
2.9.4;2.9.4 Indirect Transport;121
2.10;Bibliography;122
3;3 Chemical Vapor Transport of Elements;127
3.1;3.1 Transport with Halogens;128
3.2;3.2 Conproportionation Reactions;132
3.3;3.3 Reversal of the Transport Direction;134
3.4;3.4 Transport via Gas Complexes;136
3.5;3.5 Transport with the Addition of Hydrogen Halides and Water;137
3.6;3.6 Oxygen as a Transport Agent;138
3.7;3.7 Technical Applications;139
3.8;Bibliography;147
4;4 Chemical Vapor Transport of Metal Halides;153
4.1;4.1 Formation of Higher Halides;154
4.2;4.2 Conproportionating Reactions;155
4.3;4.3 Formation of Gas Complexes;155
4.4;4.4 Halogen Transfer Reactions;158
4.5;4.5 Formation of Interhalogen Compounds;159
4.6;Bibliography;164
5;5 Chemical Vapor Transport of Binary and Multinary Oxides;167
5.1;5.1 Transport Agents;172
5.2;5.2 Solids;179
5.2.1;5.2.1 Group 1;179
5.2.2;5.2.2 Group 2;180
5.2.3;5.2.3 Group 3, Lanthanoids and Actinoids;182
5.2.4;5.2.4 Group 4;198
5.2.5;5.2.5 Group 5;204
5.2.6;5.2.6 Group 6;214
5.2.7;5.2.7 Group 7;220
5.2.8;5.2.8 Group 8;226
5.2.9;5.2.9 Group 9;229
5.2.10;5.2.10 Group 10;231
5.2.11;5.2.11 Group 11;236
5.2.12;5.2.12 Group 12;239
5.2.13;5.2.13 Group 13;241
5.2.14;5.2.14 Group 14;246
5.2.15;5.2.15 Group 15;254
5.2.16;5.2.16 Group 16;256
5.3;5.3 Overview of the Trasport of Oxides;259
5.4;Bibliography;289
6;6 Chemical Vapor Transport of Oxido Compounds with Complex Anions;305
6.1;6.1 Transport of Sulfates;306
6.2;6.2 Transport of Phosphates, Arsenates, Antimonates, and Vanadates;309
6.2.1;6.2.1 Chlorine as Transport Agent for Anhydrous Phosphates;310
6.2.2;6.2.2 Halogens Combined with Reducing Additives as Transport Agents for Phosphates;311
6.2.3;6.2.3 Transport of Multinary Phosphates;317
6.2.4;6.2.4 Deposition of Thermodynamically Metastable Phosphates from the Gas Phase;318
6.2.5;6.2.5 Formation of Silicophosphates during the Transport of Phosphates;320
6.2.6;6.2.6 Transport of Arsenates(V), Antimonates(V), and Vanadates(V);321
6.3;6.3 Transport of Carbonates, Silicates, and Borates;322
6.4;Bibliography;331
7;7 Chemical Vapor Transport of Sulfides, Selenides, and Tellurides;335
7.1;7.1 Transport of Sulfides;336
7.1.1;Bibliography of Section 7.1;363
7.2;7.2 Transport of Selenides;374
7.2.1;Bibliography of Section 7.2;392
7.3;7.3 Transport of Tellurides;399
7.3.1;Bibliography of Section 7.3;412
8;8 Chemical Vapor Transport of Chalcogenide Halides;417
8.1;8.1 Transport of Oxide Halides;424
8.2;8.2 Transport of Sulfide Halides, Selenide Halides, and Telluride Halides;435
8.3;8.3 Transport of Compounds with Chalcogen Poly-cations and Chalcogenate(IV)-halides;445
8.4;Bibliography;459
9;9 Chemical Vapor Transport of Pnictides;465
9.1;9.1 Transport of Phosphides;466
9.1.1;Bibliography of Section 9.1;475
9.2;9.2 Transport of Arsenides;478
9.2.1;Bibliography of Section 9.2;496
10;10 Chemical Vapor Transport of Intermetallic Phases;501
10.1;10.1 Selected Examples;506
10.2;Bibliography;525
11;11 Gas Species and their Stability;529
11.1;11.1 Halogen Compounds;529
11.2;11.2 Elements in the Gaseous State;534
11.3;11.3 Hydrogen Compounds;536
11.4;11.4 Oxygen Compounds;537
11.5;11.5 Other Substance Groups;538
11.6;Bibliography;539
12;12 Thermodynamic Data;541
12.1;12.1 Determination and Tabulation of Thermodynamic Data;541
12.2;12.2 Estimation of Thermodynamic Data;542
12.2.1;12.2.1 Thermodynamic Data of Solids;542
12.2.2;12.2.2 Thermodynamic Data of Gases;547
12.3;12.3 Quantum Chemical Calculation of Thermodynamic Data;550
12.4;Bibliography;552
13;13 Modeling of Chemical Vapor Transport Experiments: the Computer Programs TRAGMIN and CVTRANS;553
13.1;13.1 Purpose of Modeling of Chemical Vapor Transport Experiments;553
13.2;13.2 Equilibrium Calculations According to the Gmin Method;554
13.3;13.3 The Program TRAGMIN;558
13.4;13.4 The Program CVTRANS;562
13.5;Bibliography;568
14;14 Working Techniques;569
14.1;14.1 Transport Ampoules and Transport Furnaces;569
14.2;14.2 Preparation of Transport Ampoules;571
14.3;14.3 The Transport Experiment;576
14.4;14.4 The Transport Balance;578
14.5;14.5 High Temperature Vapor Transport: Transport under Plasma Conditions;579
14.6;Bibliography;580
15;15 Selected Experiments for Practical Work on Chemical Vapor Transport Reactions;581
15.1;15.1 Transport of WO2 with HgX2 (X = Cl, Br, I);581
15.2;15.2 Transport of Zn1-xMnxO Mixed-crystals;592
15.3;15.3 Transport of Rhenium(VI)-oxide;595
15.4;15.4 Transport of Nickel;597
15.5;15.5 Transport of Monophosphides MP (M = Ti to Co);599
15.7;Bibliography;605
16;16 Appendix;607
16.1;16.1 Important Thermodynamic Equations;607
16.2;16.2 Selected Physical Units, Constants, and Conversions;608
16.3;16.3 Abreviations;611
17;Index;615
18;Selected Photographs;629


Schmidt, Marcus
Marcus Schmidt, Max-Planck Institute for Chemical Physics of Solids, Dresden;

Schmidt, Peer
Peer Schmidt,University ofApplied Sciences, Lausitz, Germany.

Glaum, Robert
Robert Glaum, University ofBonn;

Binnewies, Michael
Michael Binnewies, Leibniz University, Hannover;

Michael Binnewies, Leibniz University, Hannover; Robert Glaum, University of Bonn; Marcus Schmidt, Max-Planck Institute for Chemical Physics of Solids, Dresden; Peer Schmidt, University of Applied Sciences, Lausitz, Germany.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.