Buch, Englisch, 778 Seiten, Format (B × H): 260 mm x 185 mm, Gewicht: 1482 g
Buch, Englisch, 778 Seiten, Format (B × H): 260 mm x 185 mm, Gewicht: 1482 g
Reihe: Information Science and Statistics
ISBN: 978-0-387-31073-2
Verlag: Springer
This is the first text on pattern recognition to present the Bayesian viewpoint, one that has become increasing popular in the last five years. It presents approximate inference algorithms that permit fast approximate answers in situations where exact answers are not feasible. It provides the first text to use graphical models to describe probability distributions when there are no other books that apply graphical models to machine learning. It is also the first four-color book on pattern recognition. The book is suitable for courses on machine learning, statistics, computer science, signal processing, computer vision, data mining, and bioinformatics. Extensive support is provided for course instructors, including more than 400 exercises, graded according to difficulty. Example solutions for a subset of the exercises are available from the book web site, while solutions for the remainder can be obtained by instructors from the publisher.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Grafikprogrammierung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Spiele-Programmierung, Rendering, Animation
- Technische Wissenschaften Technik Allgemein Computeranwendungen in der Technik
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Computeranwendungen in Wissenschaft & Technologie
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Robotik
Weitere Infos & Material
Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.