Buch, Englisch, 397 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 610 g
Intelligent and Secure Solutions Applying Machine Learning Techniques
Buch, Englisch, 397 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 610 g
Reihe: Smart Computing and Intelligence
ISBN: 978-981-19-1410-2
Verlag: Springer Nature Singapore
This book provides both the developers and the users with an awareness of the challenges and opportunities of advancements in healthcare paradigm with the application and availability of advanced hardware, software, tools, technique or algorithm development stemming the Internet of Things. The book helps readers to bridge the gap in their three understanding of three major domains and their interconnections:
Hardware tested and software APP development for data collection, intelligent protocols for analysis and knowledge extraction.
Medical expertise to interpret extracted knowledge towards disease prediction or diagnosis and support. Security experts to ensure data correctness for precise advice.
The book provides state-of-the-art overviews by active researchers, technically elaborating healthcare architectures/frameworks, protocols, algorithms, methodologies followed by experimental results and evaluation. Future direction and scope will be precisely documented for interested readers.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Wirtschaftswissenschaften Betriebswirtschaft Bereichsspezifisches Management Betriebliches Gesundheitsmanagement
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Sozialwissenschaften Pädagogik Teildisziplinen der Pädagogik Gesundheitspädagogik, Umweltpädagogik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
Weitere Infos & Material
Part 1 IoT based Smart Healthcare.- Chapter 1 Introduction.- Chapter 2 Architecture for Smart Healthcare: Cloud vs Edge.- Chapter 3 Main Challenges and Concerns of Health IoT Data.- Part 2 Context and Body Vitals Monitoring Systems.- Chapter 4 Human Activity Recognition Systems Based on Sensor Data using Machine Learning.- Chapter 5 Human Activity Recognition Systems Based on Audio-Video Data using Machine Learning and Deep learning.- Chapter 6 Review of Body Vitals Monitoring Systems for Disease Prediction.- Chapter 7 Review of Context Aware System Implementations.- Part 3 Social Sensing Applications for Public Health.- Chapter 8 Types of Social Sensing Data.- Chapter 9 Social Data Analysis Techniques and Applications.- Chapter 10 Challenges and Limitations of Social Data Analysis Approaches.- Part 4 Reliability, Security and Privacy of Health Data.- Chapter 11 Quality of Service vs Quality of Experience for Real-time Smart Healthcare.- Chapter 12 Security and Privacy Issues of HealthData.- Chapter 13 Review of Performance Metrics and Corrective Measures for Health Data Analysis.