Buch, Englisch, 275 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 506 g
The Basics
Buch, Englisch, 275 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 506 g
ISBN: 978-3-319-85359-8
Verlag: Springer Nature Switzerland
In this book, we provide an easy introduction to Bayesian inference using MCMC techniques, making most topics intuitively reasonable and deriving to appendixes the more complicated matters. The biologist or the agricultural researcher does not normally have a background in Bayesian statistics, having difficulties in following the technical books introducing Bayesian techniques. The difficulties arise from the way of making inferences, which is completely different in the Bayesian school, and from the difficulties in understanding complicated matters such as the MCMC numerical methods. We compare both schools, classic and Bayesian, underlying the advantages of Bayesian solutions, and proposing inferences based in relevant differences, guaranteed values, probabilities of similitude or the use of ratios. We also give a scope of complex problems that can be solved using Bayesian statistics, and we end the book explaining the difficulties associated to model choice and the use of small samples. The book has a practical orientation and uses simple models to introduce the reader in this increasingly popular school of inference.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Biomathematik
- Naturwissenschaften Agrarwissenschaften Agrarwissenschaften
- Medizin | Veterinärmedizin Veterinärmedizin Veterinärmedizin: Innere Medizin, Gynäkologie & Reproduktion
- Interdisziplinäres Wissenschaften Wissenschaften Interdisziplinär Mathematik für Naturwissenschaftler
- Naturwissenschaften Biowissenschaften Tierkunde / Zoologie Tiergenetik, Reproduktion
- Medizin | Veterinärmedizin Veterinärmedizin Veterinärmedizin
Weitere Infos & Material
Foreword.- Notation.- 1. Do we understand classical statistics?.- 2. The Bayesian choice.- 3. Posterior distributions.- 4. MCMC.- 5. The “baby” model.- 6. The linear model. I. The “fixed” effects model.- 7. The linear model. II. The “mixed” model.- 8. A scope of the possibilities of Bayesian inference + MCMC.- 9. Prior information.- 10. Model choice.- Appendix.- References.