Blitterswijk / de Boer | Tissue Engineering | E-Book | sack.de
E-Book

E-Book, Englisch, 896 Seiten

Blitterswijk / de Boer Tissue Engineering


2. Auflage 2014
ISBN: 978-0-12-420210-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 896 Seiten

ISBN: 978-0-12-420210-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Tissue Engineering is a comprehensive introduction to the engineering and biological aspects of this critical subject. With contributions from internationally renowned authors, it provides a broad perspective on tissue engineering for students coming to the subject for the first time. In addition to the key topics covered in the previous edition, this update also includes new material on the regulatory authorities, commercial considerations as well as new chapters on microfabrication, materiomics and cell/biomaterial interface. - Effectively reviews major foundational topics in tissue engineering in a clear and accessible fashion - Includes state of the art experiments presented in break-out boxes, chapter objectives, chapter summaries, and multiple choice questions to aid learning - New edition contains material on regulatory authorities and commercial considerations in tissue engineering

Clemens van Blitterswijk graduated as cell biologist from Leiden University in 1982, defending his PhD thesis in 1985 at the same university. Today his research focuses on tissue engineering and regenerative medicine, forming a unique basis of multidisciplinary research between materials and life sciences. Van Blitterswijk has authored and co-authored more than 380 peer reviewed papers (H index 90, Scopus); is one of the most frequently cited Dutch scientists in TE; the applicant and co-applicant of over 100 patents; has guided 50 PhD candidates through their thesis as supervisor or co-supervisor and currently has 30 PhD candidates under his supervision. Dr. van Blitterswijk received a number of prestigious international awards including the George Winter award of the European society for Biomaterials, the Career Achievement Award of the Tissue Engineering and Regenerative Medicine International Society and is a member of the KNAW (The Royal Netherlands Academy of Arts and Sciences).

Blitterswijk / de Boer Tissue Engineering jetzt bestellen!

Weitere Infos & Material


1;Front
Cover;1
2;Tissue
Engineering;4
3;Copyright;5
4;Contents;6
5;Contributors;26
6;Preface;32
7;Chapter 1 - Tissue Engineering: An Introduction;34
7.1;REFERENCES;53
8;Chapter 2 - Stem Cells;56
8.1;LEARNING OBJECTIVES;56
8.2;2.1 INTRODUCTION;56
8.3;2.2 DIFFERENTIATION;63
8.4;2.3 CHARACTERIZATION OF STEM CELLS: SURFACE PROTEIN EXPRESSION;64
8.5;2.4 CHARACTERIZATION OF STEM CELLS: GENE EXPRESSION;65
8.6;2.5 METASTABLE STATES OF STEM CELLS;69
8.7;2.6 PLURIPOTENT STEM CELLS;69
8.8;2.7 MULTIPOTENT STEM CELLS;78
8.9;2.8 STEM CELLS IN SKIN EPITHELIA;87
8.10;2.9 STEM CELLS IN THE INTESTINE;88
8.11;2.10 STEM CELLS IN THE CENTRAL NERVOUS SYSTEM;90
8.12;2.11 FUTURE PERSPECTIVES;92
8.13;2.12 SUMMARY;92
8.14;RECOMMENDED READING;94
8.15;REFERENCES;95
9;Chapter 3 - Tissue Formation during Embryogenesis;100
9.1;LEARNING OBJECTIVES;100
9.2;3.1 INTRODUCTION;101
9.3;3.2 CARDIAC DEVELOPMENT;106
9.4;3.3 BLOOD VESSEL DEVELOPMENT;111
9.5;3.4 DEVELOPMENT OF PERIPHERAL NERVE TISSUE;115
9.6;3.5 EMBRYONIC SKIN DEVELOPMENT;118
9.7;3.6 SKELETAL FORMATION;128
9.8;3.7 FUTURE DIRECTIONS;137
9.9;3.8 SUMMARY;137
10;Chapter 4 - Cellular Signaling;144
10.1;LEARNING OBJECTIVES;144
10.2;4.1 GENERAL INTRODUCTION;144
10.3;4.2 CELLULAR SIGNALING IN SKIN BIOLOGY;159
10.4;4.3 CELLULAR SIGNALING IN VASCULAR BIOLOGY;163
10.5;4.4 CELLULAR SIGNALING IN BONE BIOLOGY;167
10.6;4.5 CELLULAR SIGNALING IN SKELETAL MUSCLE;171
10.7;4.6 FUTURE DEVELOPMENTS;174
10.8;4.7 SNAPSHOT SUMMARY;175
10.9;RECOMMENDED READING;179
10.10;REFERENCES;179
11;Chapter 5 - Extracellular Matrix as a Bioscaffold for Tissue Engineering;182
11.1;LEARNING OBJECTIVES;182
11.2;5.1 INTRODUCTION;182
11.3;5.2 NATIVE EXTRACELLULAR MATRIX;183
11.4;5.3 ECM SCAFFOLD PREPARATION;192
11.5;5.4 CONSTRUCTIVE TISSUE REMODELING;194
11.6;5.5 CLINICAL TRANSLATION OF ECM BIOSCAFFOLDS;198
11.7;COMPOSED OF ECM;200
11.8;5.7 FUTURE CONSIDERATIONS;201
11.9;5.8 SUMMARY;202
12;Chapter 6 - Degradation of Biomaterials;210
12.1;LEARNING OBJECTIVES;210
12.2;6.1 DEGRADABLE BIOCERAMICS;210
12.3;6.2 BIODEGRADABLE POLYMERS;225
12.4;6.3 FUTURE PERSPECTIVES FOR DEGRADABLE BIOMATERIALS IN TISSUE ENGINEERING;241
12.5;6.4 SUMMARY;241
12.6;REFERENCES;244
13;Chapter 7 - Cell–Material Interactions;250
13.1;LEARNING OBJECTIVES;250
13.2;7.1 INTRODUCTION;251
13.3;7.2 SURFACE CHEMISTRY;261
13.4;7.3 SURFACE TOPOGRAPHY;267
13.5;7.4 MATERIAL MECHANICS (STIFFNESS);271
13.6;7.5 SUMMARY;275
13.7;REFERENCES;279
13.8;FURTHER READING;284
14;Chapter 8 - Materiomics: A Toolkit for Developing New Biomaterials;286
14.1;LEARNING OBJECTIVES;286
14.2;8.1 INTRODUCTION: WHAT IS MATERIOMICS?;286
14.3;8.2 WHY DO WE NEED NEW BIOMATERIALS;288
14.4;8.3 THE SIZE OF CHEMICAL SPACE;288
14.5;8.4 DESIGN OF EXPERIMENTS/GENETIC EVOLUTION/PARALLELS TO DRUG DISCOVERY;289
14.6;8.5 HIGH-THROUGHPUT EXPERIMENTAL METHODS;292
14.7;8.6 COMPUTATIONAL MODELING;299
14.8;8.7 FUTURE PERSPECTIVE;307
14.9;8.8 SUMMARY;308
14.10;REFERENCES;310
15;Chapter 9 - Microfabrication Technology in Tissue Engineering;316
15.1;LEARNING OBJECTIVES;316
15.2;9.1 INTRODUCTION;316
15.3;9.2 MICROFABRICATION TECHNIQUES IN TISSUE ENGINEERING;318
15.4;9.3 CONCLUSION AND FUTURE PERSPECTIVE;336
15.5;9.4 SUMMARY;338
15.6;RECOMMENDED READING;341
15.7;REFERENCES;341
16;Chapter 10 - Scaffold Design and Fabrication;344
16.1;LEARNING OBJECTIVES;344
16.2;10.1 INTRODUCTION;344
16.3;10.2 SCAFFOLD DESIGN;347
16.4;10.3 CLASSICAL SCAFFOLD FABRICATION TECHNIQUES;354
16.5;10.4 ELECTROSPINNING;359
16.6;10.5 ADDITIVE MANUFACTURING;363
16.7;10.6 CONCLUSION AND FUTURE DIRECTIONS;373
16.8;RECOMMENDED READING;375
16.9;REFERENCES;375
17;Chapter 11 - Controlled Release Strategies in Tissue Engineering;380
17.1;LEARNING OBJECTIVES;380
17.2;11.1 INTRODUCTION;380
17.3;11.2 BIOACTIVE FACTORS ADMIXED WITH MATRICES;389
17.4;WITHIN GEL MATRICES;395
17.5;11.4 BIOACTIVE FACTORS ENTRAPPED WITHIN HYDROPHOBIC SCAFFOLDS OR MICROPARTICLES;401
17.6;11.5 BIOACTIVE FACTORS BOUND TO AFFINITY SITES WITHIN MATRICES;405
17.7;TO MATRICES;408
17.8;11.7 MATRICES USED FOR IMMUNOMODULATION;411
17.9;11.8 SUMMARY;415
17.10;REFERENCES;419
18;Chapter 12 - Bioreactors: Enabling Technologies for Research and Manufacturing;426
18.1;LEARNING OBJECTIVES;426
18.2;12.1 INTRODUCTION;426
18.3;12.2 ENABLING TOOLS FOR TISSUE ENGINEERS;428
18.4;12.3 BIOREACTOR-BASED IN VITRO MODEL SYSTEMS;438
18.5;12.4 BIOREACTORS AS TISSUE MANUFACTURING DEVICES;442
18.6;12.5 CONCLUSIONS AND FUTURE PERSPECTIVES;450
18.7;12.6 SNAPSHOT SUMMARY;451
18.8;REFERENCES;454
19;Chapter 13 - Clinical Grade Production of Mesenchymal Stromal Cells;460
19.1;LEARNING OBJECTIVES;460
19.2;13.1 INTRODUCTION;460
19.3;13.2 ISOLATION OF BM-MSCS;467
19.4;13.3 CULTURE EXPANSION;472
19.5;13.4 CHARACTERIZATION OF CULTURE-EXPANDED MSCS;479
19.6;13.5 CRYOPRESENTATION;484
19.7;13.6 PRODUCTION OF CLINICAL GRADE MSCS;489
19.8;13.7 DONOR VARIABILITY AND DONOR-RELATED PARAMETERS AFFECTING IN VITRO PROPERTIES AND EXPANSION ABILITY OF MSCS;491
19.9;13.8 RELATIONSHIP BETWEEN IN VITRO ASSAYED MSC PROPERTIES AND THEIR POSSIBLE IN VIVO FUNCTION;491
19.10;13.9 FUTURE PERSPECTIVES;493
19.11;13.10 SNAPSHOT SUMMARY;496
19.12;FURTHER READING;497
19.13;REFERENCES;498
20;Chapter 14 - Vascularization, Survival, and Functionality of Tissue-Engineered Constructs;504
20.1;LEARNING OBJECTIVES;504
20.2;14.1 INTRODUCTION;504
20.3;14.2 STRATEGIES TO IMPROVE VASCULAR INGROWTH INTO TISSUE-ENGINEERED CONSTRUCTS;508
20.4;14.3 PREVASCULARIZATION STRATEGIES;513
20.5;14.4 STRATEGIES TO IMPROVE CELL SURVIVAL;518
20.6;14.5 IN VIVO MODELS;518
20.7;14.6 CONCLUSION/OUTLOOK;523
20.8;14.7 SUMMARY;525
20.9;References;526
21;Chapter 15 - Skin Engineering and Keratinocyte Stem Cell Therapy;530
21.1;LEARNING OBJECTIVES;530
21.2;15.1 INTRODUCTION;530
21.3;15.2 STRUCTURE OF THE EPIDERMIS;531
21.4;15.3 KERATINS;533
21.5;15.4 STRUCTURE OF THE DERMOEPIDERMAL JUNCTION;533
21.6;15.5 IN VITRO KERATINOCYTE CULTURE;535
21.7;15.6 IMMUNOGENICITY AND CULTURED KERATINOCYTES;538
21.8;15.7 DEVELOPMENT OF IN VIVO SOMATIC KERATINOCYTE STEM CELL GRAFTING;538
21.9;15.8 POOR KERATINOCYTE “TAKE”;539
21.10;15.9 ENHANCED DERMAL GRAFTING;541
21.11;15.10 THE USE OF ADULT STEM CELLS IN TISSUE-ENGINEERED SKIN;548
21.12;15.11 THE FUTURE OF TISSUE-ENGINEERED SKIN;554
21.13;15.12 SUMMARY;555
21.14;RECOMMENDED READING;557
21.15;REFERENCES;557
22;Chapter 16 - Cartilage and Bone Regeneration;562
22.1;LEARNING OBJECTIVES;562
22.2;16.1 INTRODUCTION: CARTILAGE;562
22.3;16.2 CELLULAR STRUCTURES AND MATRIX COMPOSITION OF HYALINE CARTILAGE;564
22.4;16.3 COLLAGEN;565
22.5;16.4 PROTEOGLYCANS;565
22.6;16.5 THE CHONDROCYTE;568
22.7;16.6 STEM CELLS IN CARTILAGE AND PROLIFERATION OF CHONDROCYTES;568
22.8;16.7 PATHOPHYSIOLOGY OF CARTILAGE LESION DEVELOPMENT;569
22.9;16.8 ARTIFICIAL INDUCTION OF CARTILAGE REPAIR;571
22.10;16.9 RATIONALE FOR CELL IMPLANTATION;572
22.11;16.10 CARTILAGE SPECIMENS FOR IMPLANTATION;573
22.12;16.11 CELL SEEDING DENSITY;574
22.13;16.12 WHAT TYPE OF CHONDROGENIC CELLS ARE IDEAL FOR CARTILAGE ENGINEERING?;575
22.14;16.13 ALLOGENEIC VERSUS AUTOLOGOUS CELLS;575
22.15;16.14 ARTICULAR CHONDROCYTES VERSUS OTHER CELLS;575
22.16;16.15 EMBRYONIC STEM CELLS AND INDUCED PLURIPOTENT STEM CELLS;576
22.17;16.16 XENOGRAFT CELLS;577
22.18;16.17 DIRECT ISOLATION OF TISSUE;578
22.19;16.18 SCAFFOLDS IN CARTILAGE TISSUE ENGINEERING;578
22.20;16.19 BIOREACTORS IN CARTILAGE TISSUE ENGINEERING;581
22.21;16.20 GROWTH FACTORS THAT STIMULATE CHONDROGENESIS;582
22.22;16.21 FUTURE DEVELOPMENTS IN CARTILAGE BIOLOGY;582
22.23;16.22 INTRODUCTION: BONE—BASIC BONE BIOLOGY: STRUCTURE, FUNCTION, AND CELLS;583
22.24;16.23 BONE COMPOSITION;584
22.25;16.24 BONE FORMATION;587
22.26;16.25 INTRAMEMBRANOUS OSSIFICATION;587
22.27;16.26 ENDOCHONDRAL OSSIFICATION;588
22.28;16.27 FRACTURE REPAIR;588
22.29;16.28 SKELETAL STEM CELLS;589
22.30;16.29 EXPANSION AND DIFFERENTIATION;593
22.31;16.30 GROWTH FACTORS FOR BONE REPAIR;593
22.32;16.31 SCAFFOLD BIOCOMPATIBILITY;599
22.33;16.32 THE FUNCTION OF THE VASCULATURE IN SKELETAL REGENERATION;600
22.34;16.33 ANIMAL MODELS IN BONE TISSUE ENGINEERING;602
22.35;16.34 CURRENT STATUS OF BONE TISSUE ENGINEERING;603
22.36;16.35 FUTURE PERSPECTIVES FOR BONE REGENERATION;606
22.37;16.36 SUMMARY;607
22.38;REFERENCES;611
23;Chapter 17 - Tissue Engineering of the Nervous System;616
23.1;LEARNING OBJECTIVES;616
23.2;17.1 INTRODUCTION;616
23.3;17.2 PERIPHERAL NERVE;617
23.4;17.3 CNS: SPINAL CORD;628
23.5;17.4 CNS: OPTIC NERVE;641
23.6;17.5 CNS: RETINA;642
23.7;17.6 CNS: BRAIN;645
23.8;17.7 NEUROPROSTHESES;647
23.9;17.8 FUTURE APPROACHES;649
23.10;17.9 SUMMARY;651
23.11;RECOMMENDED READING;655
23.12;REFERENCES;655
24;Chapter 18 - Principles of Cardiovascular Tissue Engineering;660
24.1;LEARNING OBJECTIVES;660
24.2;18.1 INTRODUCTION;660
24.3;18.2 HEART STRUCTURE, DISEASE, AND REGENERATION;661
24.4;18.3 CELL SOURCES FOR CARDIOVASCULAR TISSUE ENGINEERING AND REGENERATION;666
24.5;18.4 BIOMATERIALS—POLYMERS, SCAFFOLDS, AND BASIC DESIGN CRITERIA;668
24.6;OR BIOACTIVE MOLECULE DELIVERY;672
24.7;18.6 BIOENGINEERING OF CARDIAC PATCHES, IN VITRO;676
24.8;18.7 VASCULARIZATION OF CARDIAC PATCHES;687
24.9;18.8 BIOENGINEERING OF BLOOD VESSELS;693
24.10;18.9 IN SITU TISSUE RECONSTRUCTION BY INJECTABLE ACELLULAR BIOMATERIALS;704
24.11;18.10 CONCLUSIONS AND FUTURE PERSPECTIVES;707
24.12;18.11 SUMMARY;708
24.13;RECOMMENDED READING;709
24.14;REFERENCES;710
25;Chapter 19 - Tissue Engineering of Organ Systems;718
25.1;LEARNING OBJECTIVES;718
25.2;19.1 INTRODUCTION;718
25.3;19.2 UROGENITAL TISSUE ENGINEERING;720
25.4;19.3 LIVER TISSUE ENGINEERING;726
25.5;19.4 GASTROINTESTINAL TISSUE ENGINEERING;730
25.6;19.5 PANCREAS TISSUE ENGINEERING;733
25.7;19.6 LUNG TISSUE ENGINEERING;738
25.8;19.7 FUTURE DEVELOPMENTS;740
25.9;19.8 SUMMARY;742
25.10;References;746
26;Chapter 20 - Organs-on-a-Chip;750
26.1;LEARNING OBJECTIVES;750
26.2;20.1 INTRODUCTION;750
26.3;20.2 CONCEPT OF ORGAN-ON-A-CHIP;751
26.4;20.3 EXAMPLES OF ORGAN-ON-A-CHIP;756
26.5;20.4 CONCLUSION;772
26.6;20.5 SUMMARY;774
26.7;REFERENCES;777
27;Chapter 21 - Product and Process Design: Toward Industrial TE Manufacturing;780
27.1;LEARNING OBJECTIVES;780
27.2;21.1 INTRODUCTION;780
27.3;21.2 BIOREACTOR SYSTEMS FOR TE PRODUCT MANUFACTURING;787
27.4;21.3 QUALITY CONTROL FOR TE PRODUCTS—A MULTISCALE APPROACH;790
27.5;TE CONSTRUCT QUALITY ATTRIBUTES;791
27.6;21.5 ENHANCING IN VIVO PERFORMANCE: AN IN SILICO MEDIATED APPROACH FOR TE PRODUCT DESIGN;795
27.7;21.6 DOWNSTREAM PROCESSING IN TE MANUFACTURING;799
27.8;21.7 TOWARD EFFICIENT TE PRODUCT TRANSLATION;802
27.9;21.8 SNAPSHOT SUMMARY;805
27.10;REFERENCES;808
27.11;SUGGESTED PAPERS;813
28;Chapter 22 - Clinical Translation;816
28.1;LEARNING OBJECTIVES;816
28.2;22.1 INTRODUCTION;816
28.3;22.2 CLINICAL TRANSLATION OF TISSUE-ENGINEERED PRODUCTS;821
28.4;22.3 TYPICAL CHALLENGES FOR TISSUE ENGINEERING ENCOUNTERED IN THE CLINICAL PHASE;824
28.5;22.4 IMPLEMENTATION OF A CLINICAL TRIAL;829
28.6;22.5 SPECIAL POINTS TO CONSIDER;834
28.7;22.6 CONCLUSION AND FUTURE PERSPECTIVES;836
28.8;22.7 SNAPSHOT SUMMARY;837
28.9;REFERENCES;838
29;Chapter 23 - Ethical Issues in Tissue Engineering;842
29.1;LEARNING OBJECTIVES;842
29.2;23.1 INTRODUCTION;842
29.3;23.2 MORALITY, ETHICS, AND VALUES;843
29.4;OF MATERIAL FOR TISSUE ENGINEERING;847
29.5;AND NEW DANGERS;857
29.6;23.5 SOME QUESTIONS FOR THE FUTURE;862
29.7;23.6 NOTES;862
29.8;REFERENCES;870
30;Index;872


Contributors
M. Adelaide Asnaghi,     Departments of Surgery and of Biomedicine, University Hospital Basel, Basel, Switzerland Jean-Marie Aerts Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium Division M3-BIORES: Measure, Model & Manage Bioresponses, KU Leuven, Heverlee, Belgium Enateri V. Alakpa,     Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, Scotland, UK Morgan R. Alexander,     Laboratory of Biophysics and Surface Analysis, University of Nottingham, Nottingham, UK Mauro Alini,     Musculoskeletal Regeneration, AO Research Institute Davos, Davos, Switzerland Jessica J. Alm,     Center for Hematology and Regenerative Medicine and Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden Anthony Atala,     Department of Urology, Wake Forest University School of Medicine, Winston–Salem, NC, USA Stephen F. Badylak McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA Florence Barrère-de Groot,     Xpand Biotechnology BV, 3723 MB Bilthoven, The Netherlands Cameron Black,     Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom Mats Brittberg,     Department of Orthopaedics, Institute of Clinical Sciences, The Sahlgrenska Academy University of Gothenburg, Sweden Chaenyung Cha,     School of Materials Science and Engineering, Ulsan National Institute of Science and Technology, Ulsan, Korea Smadar Cohen The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel The Center for Regenerative Medicine and Stem Cell (RMSC) Research, Ben-Gurion University of the Negev, Beer-Sheva, Israel The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel Matthew J. Dalby,     Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, Scotland, UK Paul D. Dalton,     Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Germany Noel L. Davison MIRA Institute for Biomedical Technology and Technical Medicine, and Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands Xpand Biotechnology BV, 3723 MB Bilthoven, The Netherlands Jonathan I. Dawson,     Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom Jan de Boer,     Department for Cell Biology-inspired Tissue Engineering, Merlin Institute, Maastricht University, Maastricht, The Netherlands Marco C. DeRuiter,     Department of Clinical and Experimental Anatomy, Leiden University Medical Centre, Leiden, The Netherlands Adam J. Engler,     Department of Bioengineering, University of California, San Diego, USA Liesbet Geris Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium Biomechanics Research Unit, Universite de Liège, Liège, Belgium Susan Gibbs,     Department of Dermatology, VU Medical Centre, Amsterdam, The Netherlands David Gibbs,     Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom Adriana C. Gittenberger-de Groot,     Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands Dirk W. Grijpma MIRA Institute for Biomedical Technology and Technical Medicine, and Department of Biomaterials Science and Technology, University of Twente, Enschede, The Netherlands Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands Chungmin Han,     Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea Alan R. Harvey,     School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, WA, Australia Marietta Herrmann,     Musculoskeletal Regeneration, AO Research Institute Davos, Davos, Switzerland Beerend P. Hierck,     Department of Anatomy and Embryology, Leiden University Medical Centre, Leiden, The Netherlands Andrew L. Hook,     Laboratory of Biophysics and Surface Analysis, University of Nottingham, Nottingham, UK Jeffrey A. Hubbell,     Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland Dietmar W. Hutmacher,     Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia Johan Joly,     Division of Rheumatology, UZ Leuven, Leuven, Belgium Janos Kanczler,     Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Institute of Developmental Sciences, University of Southampton, Southampton, United Kingdom Marcel Karperien,     Department of Developmental BioEngineering, University of Twente, Enschede, The Netherlands Candace Kerr,     Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA Ali Khademhosseini,     Harvard-MIT Division of Health Sciences and Technology, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA, USA Joseph M. Labuz Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA Biointerfaces Institute, University of Michigan, NCRC, MI, USA Toon Lambrechts Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium Division M3-BIORES: Measure, Model & Manage Bioresponses, KU Leuven, Heverlee, Belgium Vanessa L.S. LaPointe,     Department for Cell Biology-inspired Tissue Engineering, Merlin Institute, Maastricht University, Maastricht, The Netherlands Matthias W. Laschke,     Institute for Clinical & Experimental Surgery, University of Saarland, Homburg, Saarland, Germany Katarina Le Blanc,     Center for Hematology and Regenerative Medicine and Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden Shulamit Levenberg,     Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel Anders Lindahl,     Department of Clinical Chemistry and Transfusion Medicine Institute of Biomedicine, The Sahlgrenska Academy University of Gothenburg, Sweden Ricardo Londono McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA Frank P. Luyten Division of Rheumatology, UZ Leuven, Leuven, Belgium Skeletal Biology & Engineering Research Center, KU Leuven, Leuven, Belgium Athanasios Mantalaris,     Biological Systems Engineering Laboratory, Centre for Process Systems Engineering, Department of Chemical Engineering, Imperial College London, London, UK Ivan Martin,     Departments of Surgery and of Biomedicine, University Hospital Basel, Basel, Switzerland Mikaël M. Martino,     World Premier International Immunology Frontier Research Center, Osaka University, Suita, Osaka...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.