E-Book, Englisch, 236 Seiten
Bolancé / Bolance / Guillén Quantitative Operational Risk Models
Erscheinungsjahr 2012
ISBN: 978-1-4398-9593-1
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 236 Seiten
ISBN: 978-1-4398-9593-1
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Using real-life examples from the banking and insurance industries, Quantitative Operational Risk Models details how internal data can be improved based on external information of various kinds. Using a simple and intuitive methodology based on classical transformation methods, the book includes real-life examples of the combination of internal data and external information.
A guideline for practitioners, the book begins with the basics of managing operational risk data to more sophisticated and recent tools needed to quantify the capital requirements imposed by operational risk. The book then covers statistical theory prerequisites, and explains how to implement the new density estimation methods for analyzing the loss distribution in operational risk for banks and insurance companies. In addition, it provides:
- Simple, intuitive, and general methods to improve on internal operational risk assessment
- Univariate event loss severity distributions analyzed using semiparametric models
- Methods for the introduction of underreporting information
- A practical method to combine internal and external operational risk data, including guided examples in SAS and R
Measuring operational risk requires the knowledge of the quantitative tools and the comprehension of insurance activities in a very broad sense, both technical and commercial. Presenting a nonparametric approach to modeling operational risk data, Quantitative Operational Risk Models offers a practical perspective that combines statistical analysis and management orientations.
Zielgruppe
Practitioners and graduate students in statistics, finance, business, economics, and risk management.
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Risikobewertung, Risikotheorie
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Mathematik | Informatik Mathematik Mathematik Interdisziplinär Finanz- und Versicherungsmathematik
- Mathematik | Informatik Mathematik Operations Research
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensforschung
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
Weitere Infos & Material
Understanding Operational Risk
Introduction
Our Approach to Operational Risk Quantification
Regulatory Framework
The Fundamentals of Calculating Operational Risk Capital
Notation and Definitions
The Calculation of Operational Risk Capital in Practice
Organization of the Book
Operational Risk Data and Parametric Models
Introduction
Internal Data and External Data
Basic Parametric Severity Distributions
The Generalized Champernowne Distribution
Quantile Estimation
Further Reading and Bibliographic Notes
Semiparametric Model for Operational Risk Severities
Introduction
Classical Kernel Density Estimation
Transformation Method
Bandwidth Selection
Boundary Correction
Transformation with the Generalized Champernowne Distributions
Results for the Operational Risk Data
Further Reading and Bibliographic Notes
Combining Operational Risk Data Sources
Why Mixing?
Combining Data Sources with the Transformation Method
The Mixing Transformation Technique
Data Study
Further Reading and Bibliographic Notes
Underreporting
Introduction
The Underreporting Function
Publicly Reported Loss Data
Semiparametric Approach to Correction tor Underreporting
An Application to Evaluate Operational Risk with Correction
An Application to Evaluate Internal Operational Risk
Further Reading and Bibliographic Notes
Combining Underreported Internal and External Data
Introduction
Data Availability
Underreporting Losses
A Mixing Model in a Truncation Framework
Operational Risk Application
Further Reading and Bibliographic Notes
A Guided Practical Example
Introduction
Descriptive Statistics and Basic Procedures
Transformation Kernel Estimation
Combining Internal and External Data
Underreporting Implementation
Programming in R