Borwein / Zhu | Techniques of Variational Analysis | Buch | 978-0-387-24298-9 | sack.de

Buch, Englisch, 362 Seiten, Format (B × H): 156 mm x 243 mm, Gewicht: 1550 g

Reihe: CMS Books in Mathematics

Borwein / Zhu

Techniques of Variational Analysis


2005. Auflage 2005
ISBN: 978-0-387-24298-9
Verlag: Springer

Buch, Englisch, 362 Seiten, Format (B × H): 156 mm x 243 mm, Gewicht: 1550 g

Reihe: CMS Books in Mathematics

ISBN: 978-0-387-24298-9
Verlag: Springer


Variational arguments are classical techniques whose use can be traced back to the early development of the calculus of variations and further. Rooted in the physical principle of least action they have wide applications in diverse fields. This book provides a concise account of the essential tools of infinite-dimensional first-order variational analysis. These tools are illustrated by applications in many different parts of analysis, optimization and approximation, dynamical systems, mathematical economics and elsewhere. Much of the material in the book grows out of talks and short lecture series given by the authors in the past several years. Thus, chapters in this book can easily be arranged to form material for a graduate level topics course. A sizeable collection of suitable exercises is provided for this purpose. In addition, this book is also a useful reference for researchers who use variational techniques---or just think they might like to.

Borwein / Zhu Techniques of Variational Analysis jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


and Notation.- Variational Principles.- Variational Techniques in Subdifferential Theory.- Variational Techniques in Convex Analysis.- Variational Techniques and Multifunctions.- Variational Principles in Nonlinear Functional Analysis.- Variational Techniques In the Presence of Symmetry.


Jonathan M. Borwein, FRSC is Canada Research Chair in Collaborative Technology at Dalhousie University. He received his Doctorate from Oxford in 1974 and has been on faculty at Waterloo, Carnegie Mellon and Simon Fraser Universities. He has published extensively in optimization, analysis and computational mathematics and has received various prizes both for research and for exposition.

Qiji J. Zhu is a Professor in the Department of Mathematics at Western Michigan University. He received his doctorate at Northeastern University in 1992. He has been a Research Associate at University of Montreal, Simon Fraser University and

University of Victoria, Canada.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.