E-Book, Englisch, 298 Seiten, eBook
Bouguila / Fan / Amayri Hidden Markov Models and Applications
1. Auflage 2022
ISBN: 978-3-030-99142-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 298 Seiten, eBook
Reihe: Unsupervised and Semi-Supervised Learning
ISBN: 978-3-030-99142-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Chapter1. A Roadmap to Hidden Markov Models and A Review of its Application in Occupancy Estimation.- Chapter2. Bounded asymmetric Gaussian mixture-based hidden Markov models.- Chapter3. Using HMM to model neural dynamics and decode useful signals for neuroprosthetic control.- Chapter4. Fire Detection in Images with Discrete Hidden Markov Models.- Chapter5. Hidden Markov Models: Discrete Feature Selection in Activity Recognition.- Chapter6. Bayesian Inference of Hidden Markov Models using Dirichlet Mixtures.- Chapter7. Online learning of Inverted Beta-Liouville HMMs for Anomaly Detection in Crowd Scenes.- Chapter8. A Novel Continuous Hidden Markov Model for Modeling Positive Sequential Data.- Chapter9. Multivariate Beta-based Hidden Markov Models Applied to Human Activity Recognition.- Chapter10. Multivariate Beta-based Hierarchical Dirichlet Process Hidden Markov Models in Medical Applications.- Chapter11. Shifted-Scaled Dirichlet Based Hierarchical Dirichlet Process Hidden Markov Models with Variational Inference Learning.