E-Book, Englisch, 0 Seiten
Reihe: Cambridge Series in Statistical and Probabilistic Mathematics
Bouveyron / Celeux / Murphy Model-Based Clustering and Classification for Data Science
Erscheinungsjahr 2019
ISBN: 978-1-108-64059-6
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
With Applications in R
E-Book, Englisch, 0 Seiten
Reihe: Cambridge Series in Statistical and Probabilistic Mathematics
ISBN: 978-1-108-64059-6
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Cluster analysis finds groups in data automatically. Most methods have been heuristic and leave open such central questions as: how many clusters are there? Which method should I use? How should I handle outliers? Classification assigns new observations to groups given previously classified observations, and also has open questions about parameter tuning, robustness and uncertainty assessment. This book frames cluster analysis and classification in terms of statistical models, thus yielding principled estimation, testing and prediction methods, and sound answers to the central questions. It builds the basic ideas in an accessible but rigorous way, with extensive data examples and R code; describes modern approaches to high-dimensional data and networks; and explains such recent advances as Bayesian regularization, non-Gaussian model-based clustering, cluster merging, variable selection, semi-supervised and robust classification, clustering of functional data, text and images, and co-clustering. Written for advanced undergraduates in data science, as well as researchers and practitioners, it assumes basic knowledge of multivariate calculus, linear algebra, probability and statistics.
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Epidemiologie, Medizinische Statistik
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
- Sozialwissenschaften Soziologie | Soziale Arbeit Soziologie Allgemein Empirische Sozialforschung, Statistik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizinische Mathematik & Informatik
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Maschinelles Lernen
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Data Mining
Weitere Infos & Material
1. Introduction; 2. Model-based clustering: basic ideas; 3. Dealing with difficulties; 4. Model-based classification; 5. Semi-supervised clustering and classification; 6. Discrete data clustering; 7. Variable selection; 8. High-dimensional data; 9. Non-Gaussian model-based clustering; 10. Network data; 11. Model-based clustering with covariates; 12. Other topics; List of R packages; Bibliography; Index.