Boy / Guegan / Krob | Complex Systems Design & Management | E-Book | sack.de
E-Book

E-Book, Englisch, 209 Seiten, eBook

Boy / Guegan / Krob Complex Systems Design & Management

Proceedings of the Tenth International Conference on Complex Systems Design & Management, CSD&M Paris 2019
1. Auflage 2019
ISBN: 978-3-030-34843-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

Proceedings of the Tenth International Conference on Complex Systems Design & Management, CSD&M Paris 2019

E-Book, Englisch, 209 Seiten, eBook

ISBN: 978-3-030-34843-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book contains all refereed papers accepted during the tenth edition of the conference that took place at the Cité Internationale Universitaire de Paris on December 12-13, 2019. Mastering complex systems requires an integrated understanding of industrial practices as well as sophisticated theoretical techniques and tools. This explains the creation of an annual go-between forum in Paris dedicated to academic researchers & industrial actors working on complex industrial systems architecture, modeling & engineering. These proceedings cover the most recent trends in the emerging field of Complex Systems, both from an academic and a professional perspective. A special focus is put on “Systems Engineering through the ages”. The CSD&M Paris 2019 conference is organized under the guidance of CESAM Community. It has been developed since 2010 by the non-profit organization CESAMES Association to organize the sharing of good practices in Enterprise and Systems Architecture and to certify the level of knowledge and proficiency in this field through CESAM certification.
Boy / Guegan / Krob Complex Systems Design & Management jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;5
1.1;Introduction;5
1.2;Why a CSD&M Conference?;5
1.3;Our Core Academic—Industrial Dimension;6
1.4;The 2019 Edition;6
2;Conference Organization;8
2.1;Conference Chairs;8
2.2;General Chair;8
2.3;Organizing Committee Chair;8
2.4;Program Committee Co-chairs;8
2.5;Program Committee;8
2.6;Academic Members;8
2.7;Sec11;8
2.8;Sec12;9
2.9;Industrial Members;9
2.10;Sec14;9
2.11;Sec15;9
2.12;Organizing Committee;9
2.13;Chair;9
2.14;Members;9
2.15;Invited Speakers;10
2.16;Plenary Sessions;10
2.17;“New Mobilities” Track;10
2.18;“Energy” Track;11
2.19;“Smart Cities” Track;11
2.20;“Modeling, Simulation, Visualization” Track;11
2.21;“Industry 4.0” Track;11
2.22;“Systems-of-Systems” Track;11
2.23;“Product Line Engineering” Track;11
3;Acknowledgements;12
4;Contents;14
5;Regular Papers;16
6;Gas Turbine Design at Rolls-Royce – Exploring the Limitations of a Systems Engineering Approach;17
6.1;1 Introduction;17
6.2;2 The Gas Turbine and Its Product Breakdown;18
6.2.1;2.1 Subsystems;18
6.2.2;2.2 Emergence and Integration;19
6.3;3 Organizing to Do the Work Efficiently;20
6.3.1;3.1 Organizational Breakdown Structure;20
6.3.2;3.2 Designing Product Systems and Design Topics;21
6.4;4 Product System and Design Topic Examples;22
6.4.1;4.1 The Turbine Tip Clearance Control (TTCC) Product System;22
6.4.2;4.2 The Shaft Order Vibration Design Topic;23
6.5;5 Design Topic Systems Engineering;24
6.5.1;5.1 Why Do Design Topics Exist?;24
6.5.2;5.2 Developing a Design Topic;25
6.5.3;5.3 Physical Constraints and Non-functional Interactions;25
6.6;6 Conclusions and Discussion Points;26
6.6.1;6.1 Conclusions;26
6.6.2;6.2 Discussion Points;26
6.7;References;27
7;Managing the Complexity of Processing Financial Data at Scale - An Experience Report;28
7.1;1 Introduction;28
7.2;2 The Complexity of Processing Financial Data at Scale;29
7.2.1;2.1 Background: Financial Data Feeds;30
7.2.2;2.2 Challenges Processing Financial Data at vwd;31
7.2.3;2.3 Challenges Regarding Compliance;34
7.2.4;2.4 Challenges Regarding IT Governance;35
7.3;3 How vwd Processes Financial Data at Scale;36
7.3.1;3.1 Technology: Modular Platform and Hybrid Infrastructures;36
7.3.2;3.2 Organization: Balance Agility with Regulatory Accountability;39
7.4;4 Conclusion, Ongoing and Future Work;39
7.5;References;39
8;Verification of BPMN Models;41
8.1;1 Introduction;41
8.2;2 Motivation and Objectives;42
8.3;3 Related Work;42
8.4;4 Importing the Model;43
8.5;5 Executing the Model;44
8.6;6 Tracing the Model;48
8.7;7 Conclusions;49
8.8;References;50
9;Synchronization of System Architecture, Multi-physics and Safety Models;51
9.1;1 Introduction;51
9.2;2 Case Study;52
9.3;3 Model Synchronization;53
9.3.1;3.1 Principle;53
9.3.2;3.2 S2ML as a Pivot Language;53
9.3.3;3.3 SmartSync Platform;56
9.4;4 EMA Case Study: Model Synchronization;57
9.4.1;4.1 Modeling;57
9.4.2;4.2 Synchronization of System Architecture and Multi-physics Models;58
9.4.3;4.3 Synchronization of System Architecture and Safety Models;60
9.5;5 Conclusion and Perspectives;61
9.6;References;62
10;Managing Margins Under Uncertainties Surrogate Modelling and Uncertainty Quantification;63
10.1;1 Introduction;63
10.1.1;1.1 Context and Motivation;64
10.1.2;1.2 Linking Product Strategy to Modelling & Simulation;66
10.1.3;1.3 Architecture Cockpit;67
10.2;2 Quantifying and Propagating Uncertainties for Setting Margins;68
10.3;3 Illustrative Case Study;71
10.3.1;3.1 Data Generation;72
10.3.2;3.2 Building and Testing the Surrogate Model;73
10.3.3;3.3 Exploring the Design Space Along Perpendicular Facets;73
10.3.4;3.4 Uncertainty Analysis About One Design;74
10.3.5;3.5 Uncertainty Analysis About Perpendicular Facets;75
10.3.6;3.6 Reflections on the Case Study Results;76
10.4;4 Summary and Conclusions;77
10.5;References;77
11;Implementing Organizational Cybernetics for the Next Generation of Digital Business Models;78
11.1;1 Introduction;78
11.2;2 Disruptive Technology;79
11.2.1;2.1 VNF – Virtualized Network Function and SDN – Software Defined Networks;79
11.2.2;2.2 MEC – Multi-access Edge Computing for IT Services;79
11.2.3;2.3 IoT Authentication;81
11.3;3 Organizational Change;81
11.3.1;3.1 Organizational Cybernetics;81
11.3.2;3.2 Transformation of Needs into Requirements;82
11.4;4 The Next Generation of Digital Business Models;85
11.5;5 Electronic Transactions Within the Finance Sector;88
11.6;6 Conclusion;89
11.7;References;91
12;Identifying Focal Points in IT Project Governance Using a Synthetic and Systems Thinking Approach;93
12.1;1 Introductions;93
12.2;2 Background and Literature Review;94
12.3;3 Research Method;96
12.4;4 Research Findings;97
12.5;5 Discussion and Conclusion;105
12.6;References;105
13;MAESTRIA: A New Tool to Support Collaborative Building and Sharing of an Integration, Verification, Validation, and Qualification Strategy;107
13.1;1 Introduction;107
13.2;2 The Genesis of MAESTRIA;108
13.3;3 The Rationale of MAESTRIA;110
13.4;4 Tool Chain for IVVQ Strategy Building;112
13.5;5 Added Values;113
13.6;6 Future Work and Perspectives;114
13.7;7 Conclusion;115
13.8;References;116
14;School Shootings in the U.S. – Where to Begin;117
14.1;1 Introduction;117
14.2;2 Investigative Approach;117
14.3;3 Background;118
14.4;4 Causal Chain;120
14.4.1;4.1 Desire to Act;120
14.4.2;4.2 Authority to Act;121
14.4.3;4.3 Shaping Forces;125
14.5;5 Shifts in Law Enforcement Strategy;127
14.6;6 Conclusion;128
14.7;References;128
15;Smart Component Modeling for Complex System Development;131
15.1;1 Introduction;131
15.1.1;1.1 Related Work;132
15.2;2 Current Aircraft Development Process;133
15.3;3 Out-of-Cycle Development Method;133
15.4;4 Smart Component Modeling;134
15.4.1;4.1 Models;135
15.4.2;4.2 Parametric Elements and Relations;135
15.4.3;4.3 Type System;136
15.4.4;4.4 Ports and Connectors;137
15.4.5;4.5 Constraints;137
15.5;5 Implementation;138
15.5.1;5.1 Supporting Tool Infrastructure;138
15.6;6 Example and Evaluation;139
15.7;7 Conclusion;141
15.8;References;141
16;Dynamic Disruption Simulation in Large-Scale Urban Rail Transit Systems;143
16.1;1 Introduction;143
16.2;2 Simulation-Based Disruption Analysis;144
16.2.1;2.1 Urban Transit System Model;144
16.2.2;2.2 The Objective Function – Minimization of Aggregated Delays;146
16.2.3;2.3 The Simulation Inputs and Optimization Framework;147
16.3;3 The Test Network and Test Cases;147
16.4;4 Results and Discussion;149
16.4.1;4.1 Case 1: The Undisrupted Network;149
16.4.2;4.2 Case 2: Link Flow and Travel Delay Under Disruptions;150
16.4.3;4.3 Case 3: Optimizing the Train Headway;151
16.4.4;4.4 Case 4: Effects of Passenger Demand Uncertainty;152
16.5;5 Conclusion;153
16.6;References;153
17;A Multiobjective Systems Architecture Model for Sensor Selection in Autonomous Vehicle Navigation;155
17.1;1 Introduction;155
17.2;2 Related Work;156
17.2.1;2.1 Systems Approaches to Autonomous Vehicle Architecture;156
17.2.2;2.2 Sensor Evaluation and Selection;156
17.3;3 Methodology;158
17.3.1;3.1 Sensor Library;158
17.3.2;3.2 Evaluation;158
17.3.3;3.3 Enumeration;160
17.4;4 Results;162
17.5;5 Conclusion;164
17.6;References;165
18;Simulation Architecture Definition for Complex Systems Design: A Tooled Methodology;167
18.1;1 Introduction;167
18.1.1;1.1 Context;167
18.1.2;1.2 Industrial Problem;168
18.2;2 Agility in Complex Conception Cycle;169
18.3;3 Solicitation Package from the System Architect;171
18.3.1;3.1 Current Practice and Alternative;171
18.3.2;3.2 Content of the Solicitation Package;171
18.3.3;3.3 Implementation of the Solicitation Package;172
18.4;4 Proposed Methodology for the Simulation Architecture Definition;173
18.4.1;4.1 Developed Components;174
18.5;5 Conclusion;176
18.6;References;176
19;Towards a Cross-Domain Modeling Approach in System-of-Systems Architectures;178
19.1;1 Introduction;178
19.2;2 Related Work;179
19.2.1;2.1 Software Platform Embedded Systems (SPES);179
19.2.2;2.2 Automotive Reference Architecture Model (ARAM);180
19.2.3;2.3 Reference Architecture Model Industrie 4.0 (RAMI 4.0);180
19.2.4;2.4 Smart Grid Architecture Model (SGAM);181
19.3;3 Approach;181
19.3.1;3.1 Agile Design Science Research Methodology;181
19.3.2;3.2 Case Study;182
19.4;4 Implementation;183
19.5;5 Application;185
19.5.1;5.1 Findings;187
19.6;6 Conclusions and Future Work;187
19.7;References;188
20;Safety Demonstration of Autonomous Vehicles: A Review and Future Research Questions;190
20.1;1 Introduction;190
20.2;2 Challenges in AV Safety Validation;191
20.2.1;2.1 Specificities and Technological Issues;192
20.2.2;2.2 Difficulty in Compensating for the Presence of Uncertainties;192
20.2.3;2.3 Limitation of the ISO 26262 Standard;193
20.3;3 Scenarios Generation for Simulation-Based Validation;193
20.3.1;3.1 Scenarios Identification in the Industrial Domain;193
20.3.2;3.2 Concepts Definition and Their Modeling;194
20.3.3;3.3 Scenario Generation;194
20.4;4 Quantification of Uncertainty - Probabilistic Evaluation of Scenarios and Their Coverage;195
20.5;5 Simulation Framework;196
20.5.1;5.1 Specification of an AV Safety Demonstration and Testing System;196
20.5.2;5.2 Simulation Architecture for Safety Validation;197
20.6;6 Conclusion and Future Research Questions;198
20.7;Appendix: Typology of Contents;199
20.8;References;200
21;Posters;203
22;Model-Based Specification for System Development with Suppliers;204
23;Applications of Systems Thinking for Scooter Sharing Transportation System;205
24;Collaborative Decision-Making Challenges in the Dutch Railway System;206
25;Understanding Stakeholder Interactions Impacting Human Spaceflight Funding Levels;207
26;Author Index;208



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.