E-Book, Englisch, 209 Seiten, eBook
Boy / Guegan / Krob Complex Systems Design & Management
1. Auflage 2019
ISBN: 978-3-030-34843-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Proceedings of the Tenth International Conference on Complex Systems Design & Management, CSD&M Paris 2019
E-Book, Englisch, 209 Seiten, eBook
ISBN: 978-3-030-34843-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
1.1;Introduction;5
1.2;Why a CSD&M Conference?;5
1.3;Our Core Academic—Industrial Dimension;6
1.4;The 2019 Edition;6
2;Conference Organization;8
2.1;Conference Chairs;8
2.2;General Chair;8
2.3;Organizing Committee Chair;8
2.4;Program Committee Co-chairs;8
2.5;Program Committee;8
2.6;Academic Members;8
2.7;Sec11;8
2.8;Sec12;9
2.9;Industrial Members;9
2.10;Sec14;9
2.11;Sec15;9
2.12;Organizing Committee;9
2.13;Chair;9
2.14;Members;9
2.15;Invited Speakers;10
2.16;Plenary Sessions;10
2.17;“New Mobilities” Track;10
2.18;“Energy” Track;11
2.19;“Smart Cities” Track;11
2.20;“Modeling, Simulation, Visualization” Track;11
2.21;“Industry 4.0” Track;11
2.22;“Systems-of-Systems” Track;11
2.23;“Product Line Engineering” Track;11
3;Acknowledgements;12
4;Contents;14
5;Regular Papers;16
6;Gas Turbine Design at Rolls-Royce – Exploring the Limitations of a Systems Engineering Approach;17
6.1;1 Introduction;17
6.2;2 The Gas Turbine and Its Product Breakdown;18
6.2.1;2.1 Subsystems;18
6.2.2;2.2 Emergence and Integration;19
6.3;3 Organizing to Do the Work Efficiently;20
6.3.1;3.1 Organizational Breakdown Structure;20
6.3.2;3.2 Designing Product Systems and Design Topics;21
6.4;4 Product System and Design Topic Examples;22
6.4.1;4.1 The Turbine Tip Clearance Control (TTCC) Product System;22
6.4.2;4.2 The Shaft Order Vibration Design Topic;23
6.5;5 Design Topic Systems Engineering;24
6.5.1;5.1 Why Do Design Topics Exist?;24
6.5.2;5.2 Developing a Design Topic;25
6.5.3;5.3 Physical Constraints and Non-functional Interactions;25
6.6;6 Conclusions and Discussion Points;26
6.6.1;6.1 Conclusions;26
6.6.2;6.2 Discussion Points;26
6.7;References;27
7;Managing the Complexity of Processing Financial Data at Scale - An Experience Report;28
7.1;1 Introduction;28
7.2;2 The Complexity of Processing Financial Data at Scale;29
7.2.1;2.1 Background: Financial Data Feeds;30
7.2.2;2.2 Challenges Processing Financial Data at vwd;31
7.2.3;2.3 Challenges Regarding Compliance;34
7.2.4;2.4 Challenges Regarding IT Governance;35
7.3;3 How vwd Processes Financial Data at Scale;36
7.3.1;3.1 Technology: Modular Platform and Hybrid Infrastructures;36
7.3.2;3.2 Organization: Balance Agility with Regulatory Accountability;39
7.4;4 Conclusion, Ongoing and Future Work;39
7.5;References;39
8;Verification of BPMN Models;41
8.1;1 Introduction;41
8.2;2 Motivation and Objectives;42
8.3;3 Related Work;42
8.4;4 Importing the Model;43
8.5;5 Executing the Model;44
8.6;6 Tracing the Model;48
8.7;7 Conclusions;49
8.8;References;50
9;Synchronization of System Architecture, Multi-physics and Safety Models;51
9.1;1 Introduction;51
9.2;2 Case Study;52
9.3;3 Model Synchronization;53
9.3.1;3.1 Principle;53
9.3.2;3.2 S2ML as a Pivot Language;53
9.3.3;3.3 SmartSync Platform;56
9.4;4 EMA Case Study: Model Synchronization;57
9.4.1;4.1 Modeling;57
9.4.2;4.2 Synchronization of System Architecture and Multi-physics Models;58
9.4.3;4.3 Synchronization of System Architecture and Safety Models;60
9.5;5 Conclusion and Perspectives;61
9.6;References;62
10;Managing Margins Under Uncertainties Surrogate Modelling and Uncertainty Quantification;63
10.1;1 Introduction;63
10.1.1;1.1 Context and Motivation;64
10.1.2;1.2 Linking Product Strategy to Modelling & Simulation;66
10.1.3;1.3 Architecture Cockpit;67
10.2;2 Quantifying and Propagating Uncertainties for Setting Margins;68
10.3;3 Illustrative Case Study;71
10.3.1;3.1 Data Generation;72
10.3.2;3.2 Building and Testing the Surrogate Model;73
10.3.3;3.3 Exploring the Design Space Along Perpendicular Facets;73
10.3.4;3.4 Uncertainty Analysis About One Design;74
10.3.5;3.5 Uncertainty Analysis About Perpendicular Facets;75
10.3.6;3.6 Reflections on the Case Study Results;76
10.4;4 Summary and Conclusions;77
10.5;References;77
11;Implementing Organizational Cybernetics for the Next Generation of Digital Business Models;78
11.1;1 Introduction;78
11.2;2 Disruptive Technology;79
11.2.1;2.1 VNF – Virtualized Network Function and SDN – Software Defined Networks;79
11.2.2;2.2 MEC – Multi-access Edge Computing for IT Services;79
11.2.3;2.3 IoT Authentication;81
11.3;3 Organizational Change;81
11.3.1;3.1 Organizational Cybernetics;81
11.3.2;3.2 Transformation of Needs into Requirements;82
11.4;4 The Next Generation of Digital Business Models;85
11.5;5 Electronic Transactions Within the Finance Sector;88
11.6;6 Conclusion;89
11.7;References;91
12;Identifying Focal Points in IT Project Governance Using a Synthetic and Systems Thinking Approach;93
12.1;1 Introductions;93
12.2;2 Background and Literature Review;94
12.3;3 Research Method;96
12.4;4 Research Findings;97
12.5;5 Discussion and Conclusion;105
12.6;References;105
13;MAESTRIA: A New Tool to Support Collaborative Building and Sharing of an Integration, Verification, Validation, and Qualification Strategy;107
13.1;1 Introduction;107
13.2;2 The Genesis of MAESTRIA;108
13.3;3 The Rationale of MAESTRIA;110
13.4;4 Tool Chain for IVVQ Strategy Building;112
13.5;5 Added Values;113
13.6;6 Future Work and Perspectives;114
13.7;7 Conclusion;115
13.8;References;116
14;School Shootings in the U.S. – Where to Begin;117
14.1;1 Introduction;117
14.2;2 Investigative Approach;117
14.3;3 Background;118
14.4;4 Causal Chain;120
14.4.1;4.1 Desire to Act;120
14.4.2;4.2 Authority to Act;121
14.4.3;4.3 Shaping Forces;125
14.5;5 Shifts in Law Enforcement Strategy;127
14.6;6 Conclusion;128
14.7;References;128
15;Smart Component Modeling for Complex System Development;131
15.1;1 Introduction;131
15.1.1;1.1 Related Work;132
15.2;2 Current Aircraft Development Process;133
15.3;3 Out-of-Cycle Development Method;133
15.4;4 Smart Component Modeling;134
15.4.1;4.1 Models;135
15.4.2;4.2 Parametric Elements and Relations;135
15.4.3;4.3 Type System;136
15.4.4;4.4 Ports and Connectors;137
15.4.5;4.5 Constraints;137
15.5;5 Implementation;138
15.5.1;5.1 Supporting Tool Infrastructure;138
15.6;6 Example and Evaluation;139
15.7;7 Conclusion;141
15.8;References;141
16;Dynamic Disruption Simulation in Large-Scale Urban Rail Transit Systems;143
16.1;1 Introduction;143
16.2;2 Simulation-Based Disruption Analysis;144
16.2.1;2.1 Urban Transit System Model;144
16.2.2;2.2 The Objective Function – Minimization of Aggregated Delays;146
16.2.3;2.3 The Simulation Inputs and Optimization Framework;147
16.3;3 The Test Network and Test Cases;147
16.4;4 Results and Discussion;149
16.4.1;4.1 Case 1: The Undisrupted Network;149
16.4.2;4.2 Case 2: Link Flow and Travel Delay Under Disruptions;150
16.4.3;4.3 Case 3: Optimizing the Train Headway;151
16.4.4;4.4 Case 4: Effects of Passenger Demand Uncertainty;152
16.5;5 Conclusion;153
16.6;References;153
17;A Multiobjective Systems Architecture Model for Sensor Selection in Autonomous Vehicle Navigation;155
17.1;1 Introduction;155
17.2;2 Related Work;156
17.2.1;2.1 Systems Approaches to Autonomous Vehicle Architecture;156
17.2.2;2.2 Sensor Evaluation and Selection;156
17.3;3 Methodology;158
17.3.1;3.1 Sensor Library;158
17.3.2;3.2 Evaluation;158
17.3.3;3.3 Enumeration;160
17.4;4 Results;162
17.5;5 Conclusion;164
17.6;References;165
18;Simulation Architecture Definition for Complex Systems Design: A Tooled Methodology;167
18.1;1 Introduction;167
18.1.1;1.1 Context;167
18.1.2;1.2 Industrial Problem;168
18.2;2 Agility in Complex Conception Cycle;169
18.3;3 Solicitation Package from the System Architect;171
18.3.1;3.1 Current Practice and Alternative;171
18.3.2;3.2 Content of the Solicitation Package;171
18.3.3;3.3 Implementation of the Solicitation Package;172
18.4;4 Proposed Methodology for the Simulation Architecture Definition;173
18.4.1;4.1 Developed Components;174
18.5;5 Conclusion;176
18.6;References;176
19;Towards a Cross-Domain Modeling Approach in System-of-Systems Architectures;178
19.1;1 Introduction;178
19.2;2 Related Work;179
19.2.1;2.1 Software Platform Embedded Systems (SPES);179
19.2.2;2.2 Automotive Reference Architecture Model (ARAM);180
19.2.3;2.3 Reference Architecture Model Industrie 4.0 (RAMI 4.0);180
19.2.4;2.4 Smart Grid Architecture Model (SGAM);181
19.3;3 Approach;181
19.3.1;3.1 Agile Design Science Research Methodology;181
19.3.2;3.2 Case Study;182
19.4;4 Implementation;183
19.5;5 Application;185
19.5.1;5.1 Findings;187
19.6;6 Conclusions and Future Work;187
19.7;References;188
20;Safety Demonstration of Autonomous Vehicles: A Review and Future Research Questions;190
20.1;1 Introduction;190
20.2;2 Challenges in AV Safety Validation;191
20.2.1;2.1 Specificities and Technological Issues;192
20.2.2;2.2 Difficulty in Compensating for the Presence of Uncertainties;192
20.2.3;2.3 Limitation of the ISO 26262 Standard;193
20.3;3 Scenarios Generation for Simulation-Based Validation;193
20.3.1;3.1 Scenarios Identification in the Industrial Domain;193
20.3.2;3.2 Concepts Definition and Their Modeling;194
20.3.3;3.3 Scenario Generation;194
20.4;4 Quantification of Uncertainty - Probabilistic Evaluation of Scenarios and Their Coverage;195
20.5;5 Simulation Framework;196
20.5.1;5.1 Specification of an AV Safety Demonstration and Testing System;196
20.5.2;5.2 Simulation Architecture for Safety Validation;197
20.6;6 Conclusion and Future Research Questions;198
20.7;Appendix: Typology of Contents;199
20.8;References;200
21;Posters;203
22;Model-Based Specification for System Development with Suppliers;204
23;Applications of Systems Thinking for Scooter Sharing Transportation System;205
24;Collaborative Decision-Making Challenges in the Dutch Railway System;206
25;Understanding Stakeholder Interactions Impacting Human Spaceflight Funding Levels;207
26;Author Index;208