E-Book, Englisch, 0 Seiten
Braun / Murdoch A First Course in Statistical Programming with R
3. Auflage 2021
ISBN: 978-1-108-99941-0
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 0 Seiten
ISBN: 978-1-108-99941-0
Verlag: Cambridge University Press
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
This third edition of Braun and Murdoch's bestselling textbook now includes discussion of the use and design principles of the tidyverse packages in R, including expanded coverage of ggplot2, and R Markdown. The expanded simulation chapter introduces the Box–Muller and Metropolis–Hastings algorithms. New examples and exercises have been added throughout. This is the only introduction you'll need to start programming in R, the computing standard for analyzing data. This book comes with real R code that teaches the standards of the language. Unlike other introductory books on the R system, this book emphasizes portable programming skills that apply to most computing languages and techniques used to develop more complex projects. Solutions, datasets, and any errata are available from www.statprogr.science. Worked examples - from real applications - hundreds of exercises, and downloadable code, datasets, and solutions make a complete package for anyone working in or learning practical data science.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Sozialwissenschaften Soziologie | Soziale Arbeit Soziologie Allgemein Empirische Sozialforschung, Statistik
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Wirtschaftsstatistik, Demographie
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik EDV | Informatik Business Application Mathematische & Statistische Software
Weitere Infos & Material
1. Getting Started; 2. Introduction to the R Language; 3. Programming Statistical Graphics; 4. Programming with R; 5. Complex Programming in the Tidyverse; 6. Simulation; 7. Computational Linear Algebra; 8. Numerical Optimization; A. Review of Random Variables and Distributions; B. Base Graphics Details; Index.