Bröcker | Lineare Algebra und Analytische Geometrie | Buch | 978-3-7643-7144-9 | sack.de

Buch, Deutsch, 366 Seiten, Paperback, Format (B × H): 170 mm x 244 mm, Gewicht: 655 g

Reihe: Grundstudium Mathematik

Bröcker

Lineare Algebra und Analytische Geometrie

Ein Lehrbuch für Physiker und Mathematiker
2., korrigierte Auflage 2004
ISBN: 978-3-7643-7144-9
Verlag: Springer

Ein Lehrbuch für Physiker und Mathematiker

Buch, Deutsch, 366 Seiten, Paperback, Format (B × H): 170 mm x 244 mm, Gewicht: 655 g

Reihe: Grundstudium Mathematik

ISBN: 978-3-7643-7144-9
Verlag: Springer


Die mathematischen Formeln. Sie spielen nur mit sich selbst, driicken nichts als ihre wunderbare Natur aus, und eben darum sind sie so ausdrucksvoll - eben daruf!1, spiegelt sich in ihnen das seltsame Verhli. ltnisspielder Dinge. Die Grundbegriffe der Linearen Algebra, wie man sie zur Vorbereitung einer Vor­ lesung tiber Algebra braucht, lassen sich auf einem Dutzend Seiten vollstandig darstellen. SoIche Kiirze wird vielleicht gerade Algebraikern yom Fach besonders einleuchten. Aber auf der anderen Seite stehen Bedtirfnisse und Interessen aus der Analysis, Geometrie und Physik, die weit tiber das hinausgehen, was man in einem zweisemestrigen Kurs bewaltigen kann. Die Theorie der Liealgebren, das Studium der orthogonalen Gruppen, die Grundlagen der speziellen Relativitats­ theorie, die Ubertragung der Analysis auf Mannigfaltigkeiten und die Grundlagen der Projektiven Geometrie, - all das ist eigentlich nur Lineare Algebra. Nun ist das Buch, das ich hier vorlege, auch nicht enzyklopadisch, aber ich mochte doch Wege zeigen, die aus dem einfachen Rechenschematismus, mit dem die Lineare Algebra beginnt, in reiche, vielfiiltige, sinnvolle und anschauliche Ge­ biete fiihren. Meine Darste11ung beginnt mit sehr geringer Abstraktion. Das nullte Kapitel verlangt nur, was man auf der Schule machen kann, aber es stellt schon die Studenten der Physik (und die Kollegen) flir einige Zeit zufrieden. Auch da­ nach geht es mit der Abstraktion behutsam voran, und ich scheue mich nicht, vieles mehrfach zu behandeln, rechnerisch, algebraisch und geometrisch. Ich glaube nicht, dass man auf diese Weise Zeit verliert.

Bröcker Lineare Algebra und Analytische Geometrie jetzt bestellen!

Zielgruppe


Lower undergraduate


Autoren/Hrsg.


Weitere Infos & Material


0 Schulweisheiten.- § 1 Vektoren im ?n.- § 2 Das Skalarprodukt.- § 3 Komplexe Zahlen.- § 4 Das Vektorprodukt.- § 5 Aufgaben.- I Vektorräume.- § 1 Gruppen, Ringe, Körper.- § 2 Homomorphismen.- § 3 Vektorräume.- § 4 Basen.- § 5 Geometrische Anwendungen.- § 6 Aufgaben.- II Matrizenrechnung.- § 1 Zeilenumformungen.- § 2 Lineare Abbildungen.- § 3 Matrizen.- § 4 Lineare Gleichungssysteme.- § 5 Aufgaben.- III Die Determinante.- § 1 Polynome.- § 2 Definition der Determinante.- § 3 Eigenschaften einer Determinante.- § 4 Eigenwerte.- § 5 Das charakteristische Polynom.- § 6 Aufgaben.- IV Bilinearformen.- § 1 Bilinearformen und quadratische Formen.- § 2 Euklidische Räume.- § 3 Orthogonale Gruppen.- § 4 Hauptachsentransformation.- § 5 Unitäre Räume.- § 6 Aufgaben.- V Die Jordansche Normalform.- § 1 Im Komplexen.- § 2 Im Reellen.- § 3 Die Komplexifizierung.- § 4 Unitäre und normale Endomorphismen.- § 5 Die Normalform orthogonaler Matrizen.- § 6 Berechnen der Jordansehen Normalform.- § 7 Lineare Differentialgleichungen.- § 8 Die Normalformen-Tabelle.- § 9 Aufgaben.- VI Geometrie.- § 1 Flächen zweiter Ordnung.- § 2 Kegelschnitte und Regelflächen.- § 3 Der Projektive Raum.- § 4 Projektivitäten.- § 5 Projektive Dualität.- § 6 Homogene Gleichungen.- § 7 Affine Hauptachsentransformation.- § 8 Der topologische Typ der Quadriken.- § 9 Bewegungen.- § 10 Quadriken und ihre Gleichungen.- § 11 Aufgaben.- VII Tensorrechnung.- § 1 Kategorien und Funktoren.- § 2 Das Tensorprodukt von Vektorräumen.- § 3 Alternierende Formen.- § 4 Die äußere Algebra.- § 5 Aufgaben.- VIII Lineare Gruppen und Liealgebren.- § 1 Gruppenoperationen.- § 2 Gruppen.- § 3 Affine Räume.- § 4 Gaußelimination.- § 5 Iwasawa-Zerlegung, Polarzerlegung,Jordan-Chevalley-Zerlegung.- § 6 Exponentialfunktion und Logarithmus.- § 7 Liealgebren.- § 8 Die adjungierte Darstellung.- § 9 Aufgaben.- IX Quaternionen und orthogonale Gruppen.- § 1 Die Gruppe SO(3) und ihre Liealgebra.- § 2 Quaternionen.- § 3 Die Gruppen SU(2), SO(3) und SO(4).- § 4 Die symplektischen Gruppen.- § 5 Die Lorentzgruppe.- § 6 Kausalität und die Lorentzgruppe.- § 7 Aufgaben.- X Ringe und Moduln.- § 1 Ringe.- § 2 Polynomringe.- § 3 Symmetrische Polynome.- § 4 Potenzreihen und symmetrische Polynome.- § 5 Endomorphismen und symmetrische Polynome.- § 6 Interpolation und der erste Zerlegungssatz.- § 7 Der Quotientenkörper.- § 8 Moduln.- § 9 Matrizen über Ringen.- § 10 Hauptidealringe.- § 11 Moduln über Hauptidealringen.- § 12 Anwendungen des Elementarteilersatzes.- § 13 Der charakteristische Endomorphismus.- § 14 Aufgaben.- Literatur.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.