Brondsted | An Introduction to Convex Polytopes | Buch | 978-0-387-90722-2 | sack.de

Buch, Englisch, Band 90, 162 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 436 g

Reihe: Graduate Texts in Mathematics

Brondsted

An Introduction to Convex Polytopes


1983
ISBN: 978-0-387-90722-2
Verlag: Springer

Buch, Englisch, Band 90, 162 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 436 g

Reihe: Graduate Texts in Mathematics

ISBN: 978-0-387-90722-2
Verlag: Springer


The aim of this book is to introduce the reader to the fascinating world of convex polytopes. The highlights of the book are three main theorems in the combinatorial theory of convex polytopes, known as the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. All the background information on convex sets and convex polytopes which is m~eded to under­ stand and appreciate these three theorems is developed in detail. This background material also forms a basis for studying other aspects of polytope theory. The Dehn-Sommerville Relations are classical, whereas the proofs of the Upper Bound Theorem and the Lower Bound Theorem are of more recent date: they were found in the early 1970's by P. McMullen and D. Barnette, respectively. A famous conjecture of P. McMullen on the charac­ terization off-vectors of simplicial or simple polytopes dates from the same period; the book ends with a brief discussion of this conjecture and some of its relations to the Dehn-Sommerville Relations, the Upper Bound Theorem and the Lower Bound Theorem. However, the recent proofs that McMullen's conditions are both sufficient (L. J. Billera and C. W. Lee, 1980) and necessary (R. P. Stanley, 1980) go beyond the scope of the book. Prerequisites for reading the book are modest: standard linear algebra and elementary point set topology in [R1d will suffice.

Brondsted An Introduction to Convex Polytopes jetzt bestellen!

Zielgruppe


Graduate


Autoren/Hrsg.


Weitere Infos & Material


1 Convex Sets.- &##00A7;1. The Affine Structure of ?d.- &##00A7;2. Convex Sets.- &##00A7;3. The Relative Interior of a Convex Set.- &##00A7;4. Supporting Hyperplanes and Halfspaces.- &##00A7;5. The Facial Structure of a Closed Convex Set.- &##00A7;6. Polarity.- 2 Convex Polytopes.- &##00A7;7. Polytopes.- &##00A7;8. Polyhedral Sets.- &##00A7;9. Polarity of Polytopes and Polyhedral Sets.- &##00A7;10. Equivalence and Duality of Polytopes.- &##00A7;11. Vertex-Figures.- &##00A7;12. Simple and Simplicial Polytopes.- &##00A7;13. Cyclic Polytopes.- &##00A7;14. Neighbourly Polytopes.- &##00A7;15. The Graph of a Polytope.- 3 Combinatorial Theory of Convex Polytopes.- &##00A7;16. Euler?s Relation.- &##00A7;17. The Dehn-Sommerville Relations.- &##00A7;18. The Upper Bound Theorem.- &##00A7;19. The Lower Bound Theorem.- &##00A7;20. McMullen?s Conditions.- Appendix 1 Lattices.- Appendix 2 Graphs.- Appendix 3 Combinatorial Identities.- Bibliographical Comments.- List of Symbols.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.