Brooks | Exploring the Infinite | Buch | 978-1-4987-0449-6 | sack.de

Buch, Englisch, 300 Seiten, Format (B × H): 155 mm x 236 mm, Gewicht: 590 g

Reihe: Textbooks in Mathematics

Brooks

Exploring the Infinite

An Introduction to Proof and Analysis
1. Auflage 2016
ISBN: 978-1-4987-0449-6
Verlag: CRC Press

An Introduction to Proof and Analysis

Buch, Englisch, 300 Seiten, Format (B × H): 155 mm x 236 mm, Gewicht: 590 g

Reihe: Textbooks in Mathematics

ISBN: 978-1-4987-0449-6
Verlag: CRC Press


Exploring the Infinite addresses the trend toward

a combined transition course and introduction to analysis course. It

guides the reader through the processes of abstraction and log-

ical argumentation, to make the transition from student of mathematics to

practitioner of mathematics.

This requires more than knowledge of the definitions of mathematical structures,

elementary logic, and standard proof techniques. The student focused on only these

will develop little more than the ability to identify a number of proof templates and

to apply them in predictable ways to standard problems.

This book aims to do something more; it aims to help readers learn to explore

mathematical situations, to make conjectures, and only then to apply methods

of proof. Practitioners of mathematics must do all of these things.

The chapters of this text are divided into two parts. Part I serves as an introduction

to proof and abstract mathematics and aims to prepare the reader for advanced

course work in all areas of mathematics. It thus includes all the standard material

from a transition to proof" course.

Part II constitutes an introduction to the basic concepts of analysis, including limits

of sequences of real numbers and of functions, infinite series, the structure of the

real line, and continuous functions.



Features

- Two part text for the combined transition and analysis course

- New approach focuses on exploration and creative thought

- Emphasizes the limit and sequences

- Introduces programming skills to explore concepts in analysis

- Emphasis in on developing mathematical thought

- Exploration problems expand more traditional exercise sets

Brooks Exploring the Infinite jetzt bestellen!

Zielgruppe


This book is intended for instructors and students taking a course in introductory analysis. It also would be useful to instructors and students who have not taken a transition course and to education majors.


Autoren/Hrsg.


Weitere Infos & Material


I Fundamentals of Abstract MathematicsBasic NotionsA First Look at Some Familiar Number SystemsInequalitiesA First Look at Sets and FunctionsProblemsMathematical InductionFirst ExamplesFirst ProgramsFirst Proofs: The Principle of Mathematical InductionStrong InductionThe Well-Ordering Principle and InductionProblemsBasic Logic and Proof TechniquesLogical Statements and Truth TablesQuantified Statements and Their NegationsProof TechniquesProblemsSets, Relations, and FunctionsSetsRelationsFunctionsProblemsElementary Discrete MathematicsBasic Principles of CombinatoricsLinear Recurrence RelationsAnalysis of AlgorithmsProblemsNumber Systems and Algebraic StructuresRepresentations of Natural NumbersIntegers and Divisibility Modular ArithmeticThe Rational NumbersAlgebraic StructuresProblemsCardinalityThe Definition Finite Sets RevistedCountably Infinite SetsUncountable SetsProblemsII Foundations of AnalysisSequences of Real NumbersThe Limit of Real NumbersProperties of LimitsCauchy SequencesProblemsA Closer Look at the Real Number SystemR as a Complete Ordered FieldConstruction of RProblemsSeries, Part 1Basic NotionsInfinite Geometric SeriesTests for Convergence of SeriesRepresentations of Real NumbersProblemsThe Structure of the Real LineBasic Notions from TopologyCompact SetsA First Glimpse at the Notion of MeasureProblemsContinuous FunctionsSequential ContinuityRelated NotionsImportant TheoremsProblemsDifferentiationDefinition and First ExamplesProperties of Differential Functions and Rules for DifferentiationApplications of the DerivativeProblemsSeries, Part 2Absolutely and Conditionally Convergent SeriesRearrangementsProblemsA A Very Short Course on PythonGetting StartedInstallation and RequirementsPython BasicsFunctionsRecursion


Jennifer Halfpap is an Associate Professor in the Department of Mathematical Sciences at the University of Montana, Missoula, USA. She is also the Associate Chair of the department, directing the Graduate Program.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.