Buch, Englisch, 260 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 564 g
A Contemporary Introduction to the World of Proofs and Pictures
Buch, Englisch, 260 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 564 g
Reihe: Routledge Contemporary Introductions to Philosophy
ISBN: 978-0-415-96048-9
Verlag: Routledge
In his long-awaited new edition of Philosophy of Mathematics, James Robert Brown tackles important new as well as enduring questions in the mathematical sciences. Can pictures go beyond being merely suggestive and actually prove anything? Are mathematical results certain? Are experiments of any real value?
This clear and engaging book takes a unique approach, encompassing non-standard topics such as the role of visual reasoning, the importance of notation, and the place of computers in mathematics, as well as traditional topics such as formalism, Platonism, and constructivism. The combination of topics and clarity of presentation make it suitable for beginners and experts alike. The revised and updated second edition of Philosophy of Mathematics contains more examples, suggestions for further reading, and expanded material on several topics including a novel approach to the continuum hypothesis.
Autoren/Hrsg.
Fachgebiete
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Wissenschaften: Theorie, Epistemologie, Methodik
- Mathematik | Informatik Mathematik Mathematik Allgemein Philosophie der Mathematik
- Geisteswissenschaften Philosophie Philosophie der Mathematik, Philosophie der Physik
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
- Geisteswissenschaften Philosophie Wissenschaftstheorie, Wissenschaftsphilosophie
Weitere Infos & Material
Preface and Acknowledgements 1. Introduction: The Mathematical Image 2. Platonism 3. Picture-Proofs and Platonism 4. What is Applied Mathematics? 5. Hilbert and Gödel 6. Knots and Notation 7. What is a Definition? 8. Constructive Approaches 9. Proofs, Pictures and Procedures in Wittgenstein 10. Computation, Proof and Conjecture 11. How to Refute the Continuum Hypothesis 12. Calling the Bluff. Notes. Bibliography. Index