Brugnano / Iavernaro | Line Integral Methods for Conservative Problems | Buch | 978-0-367-37730-4 | sack.de

Buch, Englisch, 240 Seiten, Format (B × H): 152 mm x 234 mm, Gewicht: 386 g

Brugnano / Iavernaro

Line Integral Methods for Conservative Problems


1. Auflage 2019
ISBN: 978-0-367-37730-4
Verlag: Taylor & Francis Ltd (Sales)

Buch, Englisch, 240 Seiten, Format (B × H): 152 mm x 234 mm, Gewicht: 386 g

ISBN: 978-0-367-37730-4
Verlag: Taylor & Francis Ltd (Sales)


Line Integral Methods for Conservative Problems explains the numerical solution of differential equations within the framework of geometric integration, a branch of numerical analysis that devises numerical methods able to reproduce (in the discrete solution) relevant geometric properties of the continuous vector field. The book focuses on a large set of differential systems named conservative problems, particularly Hamiltonian systems.

Assuming only basic knowledge of numerical quadrature and Runge–Kutta methods, this self-contained book begins with an introduction to the line integral methods. It describes numerous Hamiltonian problems encountered in a variety of applications and presents theoretical results concerning the main instance of line integral methods: the energy-conserving Runge–Kutta methods, also known as Hamiltonian boundary value methods (HBVMs). The authors go on to address the implementation of HBVMs in order to recover in the numerical solution what was expected from the theory. The book also covers the application of HBVMs to handle the numerical solution of Hamiltonian partial differential equations (PDEs) and explores extensions of the energy-conserving methods.

With many examples of applications, this book provides an accessible guide to the subject yet gives you enough details to allow concrete use of the methods. MATLAB codes for implementing the methods are available online.

Brugnano / Iavernaro Line Integral Methods for Conservative Problems jetzt bestellen!

Zielgruppe


Professional Practice & Development

Weitere Infos & Material


A Primer on Line Integral Methods. Examples of Hamiltonian Problems. Analysis of Hamiltonian Boundary Value Methods (HBVMs). Implementing the Methods and Numerical Illustrations. Hamiltonian Partial Differential Equations. Extensions. Appendix. Bibliography. Index.


Luigi Brugnano is a full professor of numerical analysis and chairman of the mathematics courses in the Department of Mathematics and Informatics at the University of Firenze. He is a member of several journal editorial boards. His research interests include matrix conditioning/preconditioning, parallel computing, computational fluid dynamics, numerical methods, iterative methods, geometric integration, and mathematical modeling and software.

Felice Iavernaro is an associate professor of numerical analysis in the Department of Mathematics at the University of Bari. His primary interests include the design and implementation of efficient methods for the numerical solution of differential equations, particularly for the simulation of dynamical systems with geometric properties.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.