Bump | Lie Groups | Buch | 978-1-4419-1937-3 | sack.de

Buch, Englisch, Band 225, 454 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 702 g

Reihe: Graduate Texts in Mathematics

Bump

Lie Groups


1. Auflage 2011
ISBN: 978-1-4419-1937-3
Verlag: Springer Netherlands

Buch, Englisch, Band 225, 454 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 702 g

Reihe: Graduate Texts in Mathematics

ISBN: 978-1-4419-1937-3
Verlag: Springer Netherlands


This book proceeds beyond the representation theory of compact Lie groups (which is the basis of many texts) and offers a carefully chosen range of material designed to give readers the bigger picture. It explores compact Lie groups through a number of proofs and culminates in a "topics" section that takes the Frobenius-Schur duality between the representation theory of the symmetric group and the unitary groups as unifying them.

Bump Lie Groups jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


* Preface * Part I: Compact Groups: Haar Measure * Schur Orthogonality * Compact Operators * The Peter-Weyl Theorem * Part II: Lie Group Fundamentals: Lie Subgroups of GL(n, C) * Vector Fields * Left Invariant Vector Fields * The Exponential Map * Tensors and Universal Properties * The Universal Enveloping Algebra * Extension of Scalars * Representations of sl(2, C) * The Universal Cover * The Local Frobenius Theorem * Tori * Geodesics and Maximal Tori * Topological proof of Cartan’s Theorem * The Weyl Integration Formula * The Root System * Examples of Root Systems * Abstract Weyl Groups * The Fundamental Group * Semisimple Compact Groups * Highest Weight Vectors * The Weyl Character Formula * Spin * Complexification * Coxeter Groups * The Iwasawa Decomposition * The Bruhat Decomposition * Symmetric Spaces * Relative Root Systems.* Embeddings of Lie Groups * Part III: Frobenius-Schur Duality: Mackey Theory * Characters of GL(n, C) * Duality between Sk and GL(n, C) * The Jacobi-Trudi Identity * Schur Polynomials and GL(n, C) * Schur Polynomials and Sk * Random Matrix Theory * Minors of Toeplitz Matrices * Branching Formulae and Tableaux * The Cauchy Identity * Unitary branching rules * The Involution Model for Sk * Some Symmetric Algebras * Gelfand Pairs * Hecke Algebras * Cohomology of Grassmannians * References


Bump, Daniel
Daniel Bump is Professor of Mathematics at Stanford University. His research is in automorphic forms, representation theory and number theory. He is a co-author of GNU Go, a computer program that plays the game of Go. His previous books include Automorphic Forms and Representations (Cambridge University Press 1997) and Algebraic Geometry (World Scientific 1998).

Daniel Bump is Professor of Mathematics at Stanford University. His research is in automorphic forms, representation theory and number theory. He is a co-author of GNU Go, a computer program that plays the game of Go. His previous books include Automorphic Forms and Representations (Cambridge University Press 1997) and Algebraic Geometry (World Scientific 1998).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.