Buch, Englisch, Band 11827, 162 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 271 g
4th International Workshop, SASHIMI 2019, Held in Conjunction with MICCAI 2019, Shenzhen, China, October 13, 2019, Proceedings
Buch, Englisch, Band 11827, 162 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 271 g
Reihe: Lecture Notes in Computer Science
ISBN: 978-3-030-32777-4
Verlag: Springer International Publishing
The 16 full papers presented were carefully reviewed and selected from 21 submissions. The contributions span the following broad categories in alignment with the initial call-for-papers: methods based on generative models or adversarial learning for MRI/CT/PET/microscopy image synthesis, image super resolution, and several applications of image synthesis and simulation for data augmentation, segmentation or lesion detection.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizinische Mathematik & Informatik
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Bildgebende Verfahren, Nuklearmedizin, Strahlentherapie Radiologie, Bildgebende Verfahren
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Bildgebende Verfahren, Nuklearmedizin, Strahlentherapie Magnetresonanztomographie, Computertomographie (MRT, CT)
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
Weitere Infos & Material
Empirical Bayesian Mixture Models for Medical Image Translation.- Improved MR to CT synthesis for PET/MR attenuation correction using Imitation Learning.- Unpaired Multi-Contrast MR Image Synthesis using Generative Adversarial Networks.- Unsupervised Retina Image Synthesis via Disentangled Representation Learning.- Pseudo-normal PET Synthesis with Generative Adversarial Networks for Localising Hypometabolism in Epilepsies.- Breast Mass Detection in Mammograms via Blending Adversarial Learning.- Tunable CT lung nodule synthesis conditioned on background image and semantic features.- Mask2Lesion: Mask-Constrained Adversarial Skin Lesion Image Synthesis.- Towards Annotation-Free Segmentation of Fluorescently Labeled Cell Membranes in Confocal Microscopy Images.- Intelligent image synthesis to attack a segmentation CNN using adversarial learning.- Physics-informed brain MRI segmentation.- 3D Medical Image Synthesis by Factorised Representation and Deformable Model Learning.- Cycle-consistent training for Reducing Negative Jacobian Determinant in Deep Registration Networks.- iSMORE: an iterative self super-resolution algorithm.- An Optical Model of Whole Blood for Detecting Platelets in Lens-Free Images.- Evaluation of the realism of an MRI simulator for stroke lesion prediction using convolutional neural network.