Burkowski | Structural Bioinformatics | E-Book | sack.de
E-Book

E-Book, Englisch, 429 Seiten

Reihe: Chapman & Hall/CRC Mathematical & Computational Biology

Burkowski Structural Bioinformatics

An Algorithmic Approach
1. Auflage 2008
ISBN: 978-1-4200-1179-1
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

An Algorithmic Approach

E-Book, Englisch, 429 Seiten

Reihe: Chapman & Hall/CRC Mathematical & Computational Biology

ISBN: 978-1-4200-1179-1
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



The Beauty of Protein Structures and the Mathematics behind Structural Bioinformatics

Providing the framework for a one-semester undergraduate course, Structural Bioinformatics: An Algorithmic Approach shows how to apply key algorithms to solve problems related to macromolecular structure.

Helps Students Go Further in Their Study of Structural Biology

Following some introductory material in the first few chapters, the text solves the longest common subsequence problem using dynamic programming and explains the science models for the Nussinov and MFOLD algorithms. It then reviews sequence alignment, along with the basic mathematical calculations needed for measuring the geometric properties of macromolecules. After looking at how coordinate transformations facilitate the translation and rotation of molecules in a 3D space, the author introduces structural comparison techniques, superposition algorithms, and algorithms that compare relationships within a protein. The final chapter explores how regression and classification are becoming more useful in protein analysis and drug design.

At the Crossroads of Biology, Mathematics, and Computer Science

Connecting biology, mathematics, and computer science, this practical text presents various bioinformatics topics and problems within a scientific methodology that emphasizes nature (the source of empirical observations), science (the mathematical modeling of the natural process), and computation (the science of calculating predictions and mathematical objects based on mathematical models).

Burkowski Structural Bioinformatics jetzt bestellen!

Zielgruppe


Students, researchers, and practitioners in bioinformatics and computational biology.


Autoren/Hrsg.


Weitere Infos & Material


Preface
The Study of Structural Bioinformatics
Motivation
Small Beginnings
Structural Bioinformatics and the Scientific Method
A More Detailed Problem Analysis: Force Fields
Modeling Issues
Sources of Error
Summary
Introduction to Macromolecular Structure
Motivation
Overview of Protein Structure
Overview of RNA Structure
Data Sources, Formats, and Applications
Motivation
Sources of Structural Data
PDB File Format
Visualization of Molecular Data
Software for Structural Bioinformatics
Dynamic Programming
Motivation
Introduction
A DP Example: The Al Gore Rhythm for Giving Talks
A Recipe for Dynamic Programming
Longest Common Subsequence
RNA Secondary Structure Prediction
Motivation
Introduction to the Problem
The Nussinov Dynamic Programming
The MFOLD Algorithm: Terminology
Protein Sequence Alignment
Protein Homology
Variations in the Global Alignment Algorithm
The Significance of a Global Alignment
Local Alignment
Protein Geometry
Introduction
Calculations Related to Protein Geometry
Ramachandran Plots
Inertial Axes
Coordinate Transformations
Motivation
Introduction
Translation Transformations
Rotation Transformations
Isometric Transformations
Structure Comparison, Alignment, and Superposition
Motivation
Introduction
Techniques for Structural Comparison
Scoring Similarities and Optimizing Scores
Superposition Algorithms
Algorithms Comparing Relationships within a Protein
Machine Learning
Motivation
Issues of Complexity
Prediction via Machine Learning
Data Used during Training and Testing
Objectives of the Learning Algorithm
Linear Regression
Ridge Regression
Preamble for Kernel Methods
Kernel Functions
Classification
Heuristics for Classification
Nearest Neighbor Classification
Support Vector Machines
Linearly Nonseparable Data
Support Vector Machines and Kernels
Expected Test Error
Transparency
Overview of the Appendices
Index



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.